Expressions.v 13 KB
Newer Older
1
(**
2
  Formalization of the base expression language for the daisy framework
3
 **)
4 5 6 7 8 9
Require Import Coq.Reals.Reals Coq.micromega.Psatz Coq.QArith.QArith
               Coq.QArith.Qreals.
Require Import Daisy.Infra.RealRationalProps Daisy.Infra.RationalSimps
               Daisy.Infra.Ltacs.
Require Export Daisy.Infra.Abbrevs Daisy.Infra.RealSimps Daisy.Infra.NatSet
        Daisy.IntervalArithQ Daisy.IntervalArith Daisy.Infra.MachineType.
10

11 12 13 14 15
(**
  Expressions will use binary operators.
  Define them first
**)
Inductive binop : Type := Plus | Sub | Mult | Div.
16

17
Definition binopEq (b1:binop) (b2:binop) :=
='s avatar
= committed
18 19 20 21 22 23
  match b1, b2 with
  | Plus, Plus => true
  | Sub,  Sub  => true
  | Mult, Mult => true
  | Div,  Div  => true
  | _,_ => false
24 25
  end.

26 27 28 29
(**
  Next define an evaluation function for binary operators on reals.
  Errors are added on the expression evaluation level later.
 **)
30
Definition evalBinop (o:binop) (v1:R) (v2:R) :=
31 32 33 34 35 36
  match o with
  | Plus => Rplus v1 v2
  | Sub => Rminus v1 v2
  | Mult => Rmult v1 v2
  | Div => Rdiv v1 v2
  end.
37

38 39
Lemma binopEq_refl b:
  binopEq b b = true.
40 41 42 43
Proof.
  case b; auto.
Qed.

44 45
Lemma binopEq_compat_eq b1 b2:
  binopEq b1 b2 = true <-> b1 = b2.
46
Proof.
47 48 49 50 51 52 53 54 55 56
  split; case b1; case b2; intros; simpl in *; congruence.
Qed.

Lemma binopEq_compat_eq_false b1 b2:
  binopEq b1 b2 = false <-> ~ (b1 = b2).
Proof.
  split; intros neq.
  - hnf; intros; subst. rewrite binopEq_refl in neq.
    congruence.
  - destruct b1; destruct b2; cbv; congruence.
57 58
Qed.

59 60 61 62 63 64
(**
   Expressions will use unary operators.
   Define them first
 **)
Inductive unop: Type := Neg | Inv.

65
Definition unopEq (o1:unop) (o2:unop) :=
='s avatar
= committed
66 67 68 69
  match o1, o2 with
  | Neg, Neg => true
  | Inv, Inv => true
  | _ , _ => false
70 71
  end.

72 73
Lemma unopEq_refl b:
  unopEq b b = true.
74 75 76 77
Proof.
  case b; auto.
Qed.

78 79
Lemma unopEq_compat_eq b1 b2:
  unopEq b1 b2 = true <-> b1 = b2.
80
Proof.
81
  split; case b1; case b2; intros; simpl in *; congruence.
82 83
Qed.

84 85
(**
   Define evaluation for unary operators on reals.
86
   Errors are added in the expression evaluation level later.
87
 **)
88
Definition evalUnop (o:unop) (v:R):=
89 90 91 92 93
  match o with
  |Neg => (- v)%R
  |Inv => (/ v)%R
  end .

94
(**
95 96
  Define expressions parametric over some value type V.
  Will ease reasoning about different instantiations later.
97
**)
98 99
Inductive exp (V:Type): Type :=
  Var: nat -> exp V
100
| Const: mType -> V -> exp V
101
| Unop: unop -> exp V -> exp V
102 103
| Binop: binop -> exp V -> exp V -> exp V
| Downcast: mType -> exp V -> exp V.
104

105 106 107 108
(**
  Boolean equality function on expressions.
  Used in certificates to define the analysis result as function
**)
109
Fixpoint expEq (e1:exp Q) (e2:exp Q) :=
='s avatar
= committed
110
  match e1, e2 with
111
  | Var _ v1, Var _ v2 => (v1 =? v2)
112 113 114 115 116 117 118 119
  | Const m1 n1, Const m2 n2 =>
    (mTypeEq m1 m2) && (Qeq_bool n1 n2)
  | Unop o1 e11, Unop o2 e22 =>
    (unopEq o1 o2) && (expEq e11 e22)
  | Binop o1 e11 e12, Binop o2 e21 e22 =>
    (binopEq o1 o2) && (expEq e11 e21) && (expEq e12 e22)
  | Downcast m1 f1, Downcast m2 f2 =>
    (mTypeEq m1 m2) && (expEq f1 f2)
='s avatar
= committed
120
  | _, _ => false
121 122
  end.

123 124
Lemma expEq_refl e:
  expEq e e = true.
125
Proof.
126
  induction e; try (apply andb_true_iff; split); simpl in *; auto .
127
  - symmetry; apply beq_nat_refl.
128
  - apply mTypeEq_refl.
129 130 131
  - apply Qeq_bool_iff; lra.
  - case u; auto.
  - case b; auto.
132
  - apply mTypeEq_refl.
133
Qed.
134

135 136
Lemma expEq_sym e e':
  expEq e e' = expEq e' e.
137 138 139
Proof.
  revert e'.
  induction e; intros e'; destruct e'; simpl; try auto.
140
  - apply Nat.eqb_sym.
141
  - f_equal.
142
    + apply mTypeEq_sym; auto.
143 144 145 146
    + apply Qeq_bool_sym.
  - f_equal.
    + destruct u; auto.
    + apply IHe.
='s avatar
= committed
147
  - f_equal.
148
    + f_equal.
149
      * destruct b; auto.
150
      * apply IHe1.
151
    + apply IHe2.
152
  - f_equal.
153
    + apply mTypeEq_sym; auto.
154 155 156
    + apply IHe.
Qed.

157 158 159 160
Lemma expEq_trans e f g:
  expEq e f = true ->
  expEq f g = true ->
  expEq e g = true.
='s avatar
= committed
161
Proof.
162
  revert e f g; induction e;
163 164 165 166 167 168
    destruct f; intros g eq1 eq2;
      destruct g; simpl in *; try congruence;
        try rewrite Nat.eqb_eq in *;
        subst; try auto.
  - andb_to_prop eq1;
      andb_to_prop eq2.
169 170
    rewrite mTypeEq_compat_eq in L, L0; subst.
    rewrite mTypeEq_refl; simpl.
171 172 173
    rewrite Qeq_bool_iff in *; lra.
  - andb_to_prop eq1;
      andb_to_prop eq2.
174 175
    rewrite unopEq_compat_eq in *; subst.
    rewrite unopEq_refl; simpl.
='s avatar
= committed
176
    eapply IHe; eauto.
177 178
  - andb_to_prop eq1;
      andb_to_prop eq2.
179 180
    rewrite binopEq_compat_eq in *; subst.
    rewrite binopEq_refl; simpl.
181 182 183 184
    apply andb_true_iff.
    split; [eapply IHe1; eauto | eapply IHe2; eauto].
  - andb_to_prop eq1;
      andb_to_prop eq2.
185 186
    rewrite mTypeEq_compat_eq in *; subst.
    rewrite mTypeEq_refl; simpl.
='s avatar
= committed
187 188 189
    eapply IHe; eauto.
Qed.

190 191
Fixpoint toRExp (e:exp Q) :=
  match e with
192
  |Var _ v => Var R v
193
  |Const m n => Const m (Q2R n)
194 195 196
  |Unop o e1 => Unop o (toRExp e1)
  |Binop o e1 e2 => Binop o (toRExp e1) (toRExp e2)
  |Downcast m e1 => Downcast m (toRExp e1)
197
  end.
198

199 200
Fixpoint toREval (e:exp R) :=
  match e with
201
  | Var _ v => Var R v
202
  | Const _ n => Const M0 n
203 204
  | Unop o e1 => Unop o (toREval e1)
  | Binop o e1 e2 => Binop o (toREval e1) (toREval e2)
205
  | Downcast _ e1 =>   Downcast M0 (toREval e1)
206
  end.
207

208
Definition toRMap (d:nat -> option mType) (n:nat) :=
='s avatar
= committed
209 210 211
  match d n with
  | Some m => Some M0
  | None => None
212
  end.
213

214 215
Arguments toRMap _ _/.

216 217 218 219
(**
  Define a perturbation function to ease writing of basic definitions
**)
Definition perturb (r:R) (e:R) :=
220
  (r * (1 + e))%R.
Heiko Becker's avatar
Heiko Becker committed
221

222 223
Hint Unfold perturb.

224
(**
225
Define expression evaluation relation parametric by an "error" epsilon.
226 227 228
The result value expresses float computations according to the IEEE standard,
using a perturbation of the real valued computation by (1 + delta), where
|delta| <= machine epsilon.
229
**)
230
Inductive eval_exp (E:env) (Gamma: nat -> option mType) :(exp R) -> R -> mType -> Prop :=
231
| Var_load m x v:
232
    Gamma x = Some m ->
233
    E x = Some v ->
234
    eval_exp E Gamma (Var R x) v m
235
| Const_dist m n delta:
236 237
    Rle (Rabs delta) (Q2R (mTypeToQ m)) ->
    eval_exp E Gamma (Const m n) (perturb n delta) m
238
| Unop_neg m f1 v1:
239 240
    eval_exp E Gamma f1 v1 m ->
    eval_exp E Gamma (Unop Neg f1) (evalUnop Neg v1) m
241
| Unop_inv m f1 v1 delta:
242 243 244 245
    Rle (Rabs delta) (Q2R (mTypeToQ m)) ->
    eval_exp E Gamma  f1 v1 m ->
    (~ v1 = 0)%R  ->
    eval_exp E Gamma (Unop Inv f1) (perturb (evalUnop Inv v1) delta) m
246
| Downcast_dist m m1 f1 v1 delta:
247
    (* Downcast expression f1 (evaluating to machine type m1), to a machine type m, less precise than m1.*)
248
    isMorePrecise m1 m = true ->
249 250 251
    Rle (Rabs delta) (Q2R (mTypeToQ m)) ->
    eval_exp E Gamma f1 v1 m1 ->
    eval_exp E Gamma (Downcast m f1) (perturb v1 delta) m
252
| Binop_dist m1 m2 op f1 f2 v1 v2 delta:
253 254 255
    Rle (Rabs delta) (Q2R (mTypeToQ (join m1 m2))) ->
    eval_exp E Gamma f1 v1 m1 ->
    eval_exp E Gamma f2 v2 m2 ->
256
    ((op = Div) -> (~ v2 = 0)%R) ->
257 258 259 260 261
    eval_exp E Gamma (Binop op f1 f2) (perturb (evalBinop op v1 v2) delta)  (join m1 m2).

Hint Constructors eval_exp.

(**
262
  Show some simpler (more general) rule lemmata
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
**)
Lemma Const_dist' m n delta v m' E Gamma:
  Rle (Rabs delta) (Q2R (mTypeToQ m)) ->
  v = perturb n delta ->
  m' = m ->
  eval_exp E Gamma (Const m n) v m'.
Proof.
  intros; subst; auto.
Qed.

Hint Resolve Const_dist'.

Lemma Unop_neg' m f1 v1 v m' E Gamma:
  eval_exp E Gamma f1 v1 m ->
  v = evalUnop Neg v1 ->
  m' = m ->
279
  eval_exp E Gamma (Unop Neg f1) v m'.
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
Proof.
  intros; subst; auto.
Qed.

Hint Resolve Unop_neg'.

Lemma Unop_inv' m f1 v1 delta v m' E Gamma:
  Rle (Rabs delta) (Q2R (mTypeToQ m)) ->
  eval_exp E Gamma  f1 v1 m ->
  (~ v1 = 0)%R  ->
  v = perturb (evalUnop Inv v1) delta ->
  m' = m ->
  eval_exp E Gamma (Unop Inv f1) v m'.
Proof.
  intros; subst; auto.
Qed.

Hint Resolve Unop_inv'.

Lemma Downcast_dist' m m1 f1 v1 delta v m' E Gamma:
  isMorePrecise m1 m = true ->
  Rle (Rabs delta) (Q2R (mTypeToQ m)) ->
  eval_exp E Gamma f1 v1 m1 ->
  v = (perturb v1 delta) ->
  m' = m ->
  eval_exp E Gamma (Downcast m f1) v m'.
Proof.
  intros; subst; eauto.
Qed.

Hint Resolve Downcast_dist'.

Lemma Binop_dist' m1 m2 op f1 f2 v1 v2 delta v m' E Gamma:
  Rle (Rabs delta) (Q2R (mTypeToQ m')) ->
  eval_exp E Gamma f1 v1 m1 ->
  eval_exp E Gamma f2 v2 m2 ->
  ((op = Div) -> (~ v2 = 0)%R) ->
  v = perturb (evalBinop op v1 v2) delta ->
  m' = join m1 m2 ->
  eval_exp E Gamma (Binop op f1 f2) v m'.
Proof.
  intros; subst; auto.
Qed.

Hint Resolve Binop_dist'.
325

326 327 328 329 330
(**
  Define the set of "used" variables of an expression to be the set of variables
  occuring in it
**)
Fixpoint usedVars (V:Type) (e:exp V) :NatSet.t :=
331 332
  match e with
  | Var _ x => NatSet.singleton x
333 334
  | Unop u e1 => usedVars e1
  | Binop b e1 e2 => NatSet.union (usedVars e1) (usedVars e2)
335
  | Downcast _ e1 => usedVars e1
336 337
  | _ => NatSet.empty
  end.
338

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
Lemma toRMap_eval_M0 f v E Gamma m:
  eval_exp E (toRMap Gamma) (toREval f) v m -> m = M0.
Proof.
  revert v E Gamma m.
  induction f; intros * eval_f; inversion eval_f; subst;
  repeat
    match goal with
    | H: context[toRMap _ _] |- _ => unfold toRMap in H
    | H: context[match ?Gamma ?v with | _ => _ end ] |- _ => destruct (Gamma v) eqn:?
    | H: Some ?m1 = Some ?m2 |- _ => inversion H; try auto
    | H: None = Some ?m |- _ => inversion H
    end; try auto.
  - eapply IHf; eauto.
  - eapply IHf; eauto.
  - assert (m1 = M0)
      by (eapply IHf1; eauto).
    assert (m2 = M0)
      by (eapply IHf2; eauto);
      subst; auto.
Qed.

360
(**
361
  If |delta| <= 0 then perturb v delta is exactly v.
362
**)
363
Lemma delta_0_deterministic (v:R) (delta:R):
Heiko Becker's avatar
Heiko Becker committed
364 365 366 367
  (Rabs delta <= 0)%R ->
  perturb v delta = v.
Proof.
  intros abs_0; apply Rabs_0_impl_eq in abs_0; subst.
368
  unfold perturb. lra.
Heiko Becker's avatar
Heiko Becker committed
369 370
Qed.

371
(**
372
Evaluation with 0 as machine epsilon is deterministic
373
**)
374
Lemma meps_0_deterministic (f:exp R) (E:env) Gamma:
375
  forall v1 v2,
376 377
  eval_exp E (toRMap Gamma) (toREval f) v1 M0 ->
  eval_exp E (toRMap Gamma) (toREval f) v2 M0 ->
378 379
  v1 = v2.
Proof.
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
  induction f;
    intros v1 v2 ev1 ev2.
  - inversion ev1; inversion ev2; subst.
    rewrite H1 in H6.
    inversion H6; auto.
  - inversion ev1; inversion ev2; subst.
    simpl in *.
    rewrite Q2R0_is_0 in *;
    repeat (rewrite delta_0_deterministic; try auto).
  - inversion ev1; inversion ev2; subst; try congruence.
    + rewrite (IHf v0 v3); eauto.
    + rewrite (IHf v0 v3); eauto.
      simpl in *.
      rewrite Q2R0_is_0 in *;
        repeat (rewrite delta_0_deterministic; try auto).
  - inversion ev1; inversion ev2; subst.
396 397 398 399 400
    assert (m0 = M0) by (eapply toRMap_eval_M0; eauto).
    assert (m3 = M0) by (eapply toRMap_eval_M0; eauto).
    assert (m1 = M0) by (eapply toRMap_eval_M0; eauto).
    assert (m2 = M0) by (eapply toRMap_eval_M0; eauto).
    subst.
401 402 403 404 405 406 407 408 409 410 411 412
    rewrite (IHf1 v0 v4); try auto.
    rewrite (IHf2 v3 v5); try auto.
    simpl in *.
    rewrite Q2R0_is_0 in *.
    repeat (rewrite delta_0_deterministic; try auto).
  - inversion ev1; inversion ev2; subst.
    apply M0_least_precision in H1;
      apply M0_least_precision in H7; subst.
    rewrite (IHf v0 v3); try auto.
    simpl in *.
    rewrite Q2R0_is_0 in *.
    repeat (rewrite delta_0_deterministic; try auto).
413 414
Qed.

415 416 417 418
(**
Helping lemma. Needed in soundness proof.
For each evaluation of using an arbitrary epsilon, we can replace it by
evaluating the subexpressions and then binding the result values to different
419
variables in the Environment.
420
 **)
421
Lemma binary_unfolding b f1 f2 E v1 v2 m1 m2 Gamma delta:
422
  (b = Div -> ~(v2 = 0 )%R) ->
423
  (Rabs delta <= Q2R (mTypeToQ (join m1 m2)))%R ->
424 425
  eval_exp E Gamma f1 v1 m1 ->
  eval_exp E Gamma f2 v2 m2 ->
426
  eval_exp E Gamma (Binop b f1 f2) (perturb (evalBinop b v1 v2) delta) (join m1 m2) ->
427 428
  eval_exp (updEnv 2 v2 (updEnv 1 v1 emptyEnv))
           (updDefVars 2 m2 (updDefVars 1 m1 Gamma))
429
             (Binop b (Var R 1) (Var R 2)) (perturb (evalBinop b v1 v2) delta) (join m1 m2).
430
Proof.
431 432
  intros no_div_zero eval_f1 eval_f2 eval_float.
  econstructor; try auto.
433 434
Qed.

435
(*
436 437 438
(**
Analogous lemma for unary expressions.
**)
439 440
Lemma unary_unfolding (e:exp R) (eps:R) (E:env) (v:R):
  (eval_exp eps E (Unop Inv e) v <->
441
   exists v1,
442 443
     eval_exp eps E e v1 /\
     eval_exp eps (updEnv 1 v1 E) (Unop Inv (Var R 1)) v).
444 445 446 447 448 449 450 451 452
Proof.
  split.
  - intros eval_un.
    inversion eval_un; subst.
    exists v1.
    repeat split; try auto.
    constructor; try auto.
    constructor; auto.
  - intros exists_val.
453 454
    destruct exists_val as [v1 [eval_f1 eval_e_E]].
    inversion eval_e_E; subst.
455 456 457
    inversion H1; subst.
    unfold updEnv in *; simpl in *.
    constructor; auto.
458
    inversion H3; subst; auto.
459
Qed. *)
460

461
(*   Using the parametric expressions, define boolean expressions for conditionals *)
462
(* **)
463 464 465
(* Inductive bexp (V:Type) : Type := *)
(*   leq: exp V -> exp V -> bexp V *)
(* | less: exp V -> exp V -> bexp V. *)
466

467
(**
468
  Define evaluation of boolean expressions
469
 **)
470 471 472 473 474 475 476 477 478 479 480 481 482 483
(* Inductive bval (E:env): (bexp R) -> Prop -> Prop := *)
(*   leq_eval (f1:exp R) (f2:exp R) (v1:R) (v2:R): *)
(*     eval_exp E f1 v1 -> *)
(*     eval_exp E f2 v2 -> *)
(*     bval E (leq f1 f2) (Rle v1 v2) *)
(* |less_eval (f1:exp R) (f2:exp R) (v1:R) (v2:R): *)
(*     eval_exp E f1 v1 -> *)
(*     eval_exp E f2 v2 -> *)
(*     bval E (less f1 f2) (Rlt v1 v2). *)
(* (** *)
(*  Simplify arithmetic later by making > >= only abbreviations *)
(* **) *)
(* Definition gr := fun (V:Type) (f1: exp V) (f2: exp V) => less f2 f1. *)
(* Definition greq := fun (V:Type) (f1:exp V) (f2: exp V) => leq f2 f1. *)