IntervalValidation.v 34.7 KB
Newer Older
Heiko Becker's avatar
Heiko Becker committed
1
(**
Heiko Becker's avatar
Heiko Becker committed
2 3 4 5 6
    Interval arithmetic checker and its soundness proof.
    The function validIntervalbounds checks wether the given analysis result is
    a valid range arithmetic for each sub term of the given expression e.
    The computation is done using our formalized interval arithmetic.
    The function is used in CertificateChecker.v to build the full checker.
Heiko Becker's avatar
Heiko Becker committed
7
**)
8
Require Import Coq.QArith.QArith Coq.QArith.Qreals QArith.Qminmax Coq.Lists.List Coq.micromega.Psatz.
9
Require Import Daisy.Infra.Abbrevs Daisy.Infra.RationalSimps Daisy.Infra.RealRationalProps.
10
Require Import Daisy.Infra.Ltacs Daisy.Infra.RealSimps Daisy.Typing.
11
Require Export Daisy.IntervalArithQ Daisy.IntervalArith Daisy.ssaPrgs.
12

13
Fixpoint validIntervalbounds (e:exp Q) (absenv:analysisResult) (P:precond) (validVars:NatSet.t) :=
14 15
  let (intv, _) := absenv e in
    match e with
16
    | Var _ _ v =>
17 18 19
      if NatSet.mem v validVars
      then true
      else isSupersetIntv (P v) intv && (Qleb (ivlo (P v)) (ivhi (P v)))
20
    | Const _ n => isSupersetIntv (n,n) intv
Heiko Becker's avatar
Heiko Becker committed
21
    | Unop o f =>
22 23 24
      if validIntervalbounds f absenv P validVars
      then
        let (iv, _) := absenv f in
Heiko Becker's avatar
Heiko Becker committed
25
        match o with
26
        | Neg =>
Heiko Becker's avatar
Heiko Becker committed
27
          let new_iv := negateIntv iv in
28 29
          isSupersetIntv new_iv intv
        | Inv =>
30 31 32 33 34 35
          if (((Qleb (ivhi iv) 0) && (negb (Qeq_bool (ivhi iv) 0))) ||
              ((Qleb 0 (ivlo iv)) && (negb (Qeq_bool (ivlo iv) 0))))
          then
            let new_iv := invertIntv iv in
            isSupersetIntv new_iv intv
          else false
Heiko Becker's avatar
Heiko Becker committed
36
        end
37
      else false
Heiko Becker's avatar
Heiko Becker committed
38
    | Binop op f1 f2 =>
39 40 41 42 43
      if ((validIntervalbounds f1 absenv P validVars) &&
          (validIntervalbounds f2 absenv P validVars))
      then
        let (iv1,_) := absenv f1 in
        let (iv2,_) := absenv f2 in
Heiko Becker's avatar
Heiko Becker committed
44
          match op with
45 46 47 48 49 50 51 52 53
          | Plus =>
            let new_iv := addIntv iv1 iv2 in
            isSupersetIntv new_iv intv
          | Sub =>
            let new_iv := subtractIntv iv1 iv2 in
            isSupersetIntv new_iv intv
          | Mult =>
            let new_iv := multIntv iv1 iv2 in
            isSupersetIntv new_iv intv
Heiko Becker's avatar
Heiko Becker committed
54
          | Div =>
55 56 57 58 59 60
            if (((Qleb (ivhi iv2) 0) && (negb (Qeq_bool (ivhi iv2) 0))) ||
                ((Qleb 0 (ivlo iv2)) && (negb (Qeq_bool (ivlo iv2) 0))))
            then
              let new_iv := divideIntv iv1 iv2 in
              isSupersetIntv new_iv intv
            else false
61
          end
62
      else false
63
    | Downcast _ f1 =>
64 65 66
      let (iv1, _) := absenv f1 in
      andb (validIntervalbounds f1 absenv P validVars) (andb (isSupersetIntv intv iv1) (isSupersetIntv iv1 intv))
           (* TODO: intv = iv1 might be a hard constraint... *)
67 68
    end.

69
Fixpoint validIntervalboundsCmd (f:cmd Q) (absenv:analysisResult) (P:precond) (validVars:NatSet.t) :bool:=
70
  match f with
71
  | Let m x e g =>
72
    if (validIntervalbounds e absenv P validVars &&
73 74
        Qeq_bool (fst (fst (absenv e))) (fst (fst (absenv (Var Q m x)))) &&
        Qeq_bool (snd (fst (absenv e))) (snd (fst (absenv (Var Q m x)))))
75 76
    then validIntervalboundsCmd g absenv P (NatSet.add x validVars)
    else false
77 78
  |Ret e =>
   validIntervalbounds e absenv P validVars
79 80 81
  end.

Theorem ivbounds_approximatesPrecond_sound f absenv P V:
82 83 84 85
  validIntervalbounds f absenv P V = true ->
  forall v m, NatSet.In v (NatSet.diff (Expressions.usedVars f) V) ->
              (typeExpression f) (Var Q m v) = Some m ->
       Is_true(isSupersetIntv (P v) (fst (absenv (Var Q m v)))).
86
Proof.
Heiko Becker's avatar
Heiko Becker committed
87
  induction f; unfold validIntervalbounds.
88 89
  - simpl. intros approx_true v m0 v_in_fV typef; simpl in *.
    case_eq (mTypeEqBool m m0 && (n =? v)); intros; rewrite H in typef; inversion typef; subst.
90 91 92
    rewrite NatSet.diff_spec in v_in_fV.
    rewrite NatSet.singleton_spec in v_in_fV;
      destruct v_in_fV; subst.
93
    destruct (absenv (Var Q m0 n)); simpl in *.
94 95 96 97
    case_eq (NatSet.mem n V); intros case_mem;
      rewrite case_mem in approx_true; simpl in *.
    + rewrite NatSet.mem_spec in case_mem.
      contradiction.
98 99 100
    + apply Is_true_eq_left in approx_true.
      apply andb_prop_elim in approx_true.
      destruct approx_true; auto.
101 102 103 104
  - intros approx_true v0 m0 v_in_fV typef; simpl in *.
    inversion v_in_fV. 
  - intros approx_unary_true v m0 v_in_fV typef; simpl in *.  
    unfold typeExpression in typef; inversion typef.
Heiko Becker's avatar
Heiko Becker committed
105
    apply Is_true_eq_left in approx_unary_true.
106
    simpl in *.
107
    destruct (absenv (Unop u f)); destruct (absenv f); simpl in *.
Heiko Becker's avatar
Heiko Becker committed
108 109 110 111
    apply andb_prop_elim in approx_unary_true.
    destruct approx_unary_true.
    apply IHf; try auto.
    apply Is_true_eq_true; auto.
112
  - intros approx_bin_true v m0 v_in_fV typef.
113 114 115 116
    simpl in v_in_fV.
    rewrite NatSet.diff_spec in v_in_fV.
    destruct v_in_fV as [ v_in_fV v_not_in_V].
    rewrite NatSet.union_spec in v_in_fV.
117
    apply Is_true_eq_left in approx_bin_true.
118 119 120 121 122 123 124 125 126 127 128 129
    case_eq (typeExpression f1 (Var Q m0 v));
      case_eq (typeExpression f2 (Var Q m0 v)); intros; auto; subst.
    + pose proof (detTypingBinop f1 f2 b _ _ typef H0 H) as [H01 H02]; subst.
      destruct (absenv (Binop b f1 f2)); destruct (absenv f1);
        destruct (absenv f2); simpl in *.
      apply andb_prop_elim in approx_bin_true.
      destruct approx_bin_true.
      apply andb_prop_elim in H1.
      destruct H1.
      apply IHf1; auto.
      apply Is_true_eq_true; auto.
      rewrite NatSet.diff_spec; split; auto.
130
      eapply typedVarIsUsed; eauto.
131 132 133 134 135 136 137 138
    + simpl in *; rewrite H0,H in typef; inversion typef; subst.
      destruct (absenv (Binop b f1 f2)); destruct (absenv f1);
        destruct (absenv f2); simpl in *.
      apply andb_prop_elim in approx_bin_true.
      destruct approx_bin_true.
      apply andb_prop_elim in H1.
      destruct H1.
      apply IHf1; auto.
139
      apply Is_true_eq_true; auto.
140
      rewrite NatSet.diff_spec; split; auto.
141
      eapply typedVarIsUsed; eauto.
142 143 144 145 146 147 148 149
    + simpl in *; rewrite H0,H in typef; inversion typef; subst.
      destruct (absenv (Binop b f1 f2)); destruct (absenv f1);
        destruct (absenv f2); simpl in *.
      apply andb_prop_elim in approx_bin_true.
      destruct approx_bin_true.
      apply andb_prop_elim in H1.
      destruct H1.
      apply IHf2; auto.
150
      apply Is_true_eq_true; auto.
151
      rewrite NatSet.diff_spec; split; auto.
152
      eapply typedVarIsUsed; eauto.
153 154 155
    + simpl in *; rewrite H0,H in typef; inversion typef; subst.
  - intros approx_rnd_true v m0 v_in_fV typef.
    simpl in *; destruct (absenv (Downcast m f)); destruct (absenv f).
156 157 158 159 160 161
    apply Is_true_eq_left in approx_rnd_true.
    apply andb_prop_elim in approx_rnd_true.
    destruct approx_rnd_true.
    apply IHf; auto.
    apply Is_true_eq_true in H; auto.
Qed.
162

Heiko Becker's avatar
Heiko Becker committed
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
Corollary Q2R_max4 a b c d:
  Q2R (IntervalArithQ.max4 a b c d) = max4 (Q2R a) (Q2R b) (Q2R c) (Q2R d).
Proof.
  unfold IntervalArithQ.max4, max4; repeat rewrite Q2R_max; auto.
Qed.

Corollary Q2R_min4 a b c d:
  Q2R (IntervalArithQ.min4 a b c d) = min4 (Q2R a) (Q2R b) (Q2R c) (Q2R d).
Proof.
  unfold IntervalArith.min4, min4; repeat rewrite Q2R_min; auto.
Qed.

Ltac env_assert absenv e name :=
  assert (exists iv err, absenv e = (iv,err)) as name by (destruct (absenv e); repeat eexists; auto).

178
Lemma validBoundsDiv_uneq_zero e1 e2 absenv P V ivlo_e2 ivhi_e2 err:
179
  absenv e2 = ((ivlo_e2,ivhi_e2), err) ->
180
  validIntervalbounds (Binop Div e1 e2) absenv P V = true ->
181 182 183 184 185 186 187
  (ivhi_e2 < 0) \/ (0 < ivlo_e2).
Proof.
  intros absenv_eq validBounds.
  unfold validIntervalbounds in validBounds.
  env_assert absenv (Binop Div e1 e2) abs_div; destruct abs_div as [iv_div [err_div abs_div]].
  env_assert absenv e1 abs_e1; destruct abs_e1 as [iv_e1 [err_e1 abs_e1]].
  rewrite abs_div, abs_e1, absenv_eq in validBounds.
188
  repeat (rewrite <- andb_lazy_alt in validBounds).
189 190 191
  apply Is_true_eq_left in validBounds.
  apply andb_prop_elim in validBounds.
  destruct validBounds as [_ validBounds]; apply andb_prop_elim in validBounds.
192
  destruct validBounds as [nodiv0 _].
193
  apply Is_true_eq_true in nodiv0.
194
  unfold isSupersetIntv in *; simpl in *.
195
  apply le_neq_bool_to_lt_prop; auto.
196 197
Qed.

198 199
Fixpoint getRetExp (V:Type) (f:cmd V) :=
  match f with
200
  |Let m x e g => getRetExp g
201 202 203
  | Ret e => e
  end.

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
Lemma typingVarDet (e:exp Q) m m0 v:
  typeExpression e (Var Q m v) = Some m0 ->
  m = m0.
Proof.
  revert e; induction e; intros.
  - simpl in H.
    case_eq (mTypeEqBool m1 m && (n =? v)); intros; rewrite H0 in H; inversion H; auto.
    rewrite <- H2.
    apply andb_true_iff in H0; destruct H0 as [H0m H0n].
    apply EquivEqBoolEq in H0m; auto.
  - simpl in H; inversion H.
  - simpl in H; apply IHe; auto.
  - simpl in H.
    case_eq (typeExpression e1 (Var Q m v)); intros; rewrite H0 in H; auto;
      case_eq (typeExpression e2 (Var Q m v)); intros; rewrite H1 in H; auto.
    + case_eq (mTypeEqBool m1 m2); intros; rewrite H2 in H; inversion H; auto.
      apply IHe1; auto.
      rewrite <- H4; auto.
    + inversion H; subst; apply IHe1; auto.
    + inversion H; subst; apply IHe2; auto.
    + inversion H.
  - apply IHe.
    simpl in H.
    auto.
Qed.    
229 230


231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
Lemma validVarsUnfolding_l (E:env) (absenv:analysisResult) (f1 f2: exp Q) dVars (b:binop) m0:
  (typeExpression (Binop b f1 f2)) (Binop b f1 f2) = Some m0 ->
  (forall (v : NatSet.elt) (m : mType),
      NatSet.mem v dVars = true ->
      typeExpression (Binop b f1 f2) (Var Q m v) = Some m ->
      exists vR : R,
        E v = Some (vR, M0) /\
        (Q2R (fst (fst (absenv (Var Q m v)))) <= vR <= Q2R (snd (fst (absenv (Var Q m v)))))%R)
  ->
  (forall (v : NatSet.elt) (m : mType),
      NatSet.mem v dVars = true ->
      typeExpression f1 (Var Q m v) = Some m ->
      exists vR : R,
        E v = Some (vR, M0) /\
        (Q2R (fst (fst (absenv (Var Q m v)))) <= vR <= Q2R (snd (fst (absenv (Var Q m v)))))%R).
Proof.
  intros.
  specialize (H0 v m H1).
  case_eq (typeExpression f2 (Var Q m v)); intros; auto.
  - case_eq (mTypeEqBool m m1); intros.
    + (*apply EquivEqBoolEq in H4. ; rewrite <- H4 in H3.*)
      assert (typeExpression (Binop b f1 f2) (Var Q m v) = Some m).
      simpl typeExpression; rewrite H2, H3.
      rewrite H4; auto.
      specialize (H0 H5); auto.
    + pose proof (typingVarDet _ _ _ H3).
      rewrite H5 in H4.
      rewrite mTypeEqBool_refl in H4.
      inversion H4.
  - assert (typeExpression (Binop b f1 f2) (Var Q m v) = Some m) by (simpl; rewrite H2,H3; auto).
    specialize (H0 H4).
    auto.
Qed.    
264

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
Lemma validVarsUnfolding_r (E:env) (absenv:analysisResult) (f1 f2: exp Q) dVars (b:binop) m0:
  (typeExpression (Binop b f1 f2)) (Binop b f1 f2) = Some m0 ->
  (forall (v : NatSet.elt) (m : mType),
      NatSet.mem v dVars = true ->
      typeExpression (Binop b f1 f2) (Var Q m v) = Some m ->
      exists vR : R,
        E v = Some (vR, M0) /\
        (Q2R (fst (fst (absenv (Var Q m v)))) <= vR <= Q2R (snd (fst (absenv (Var Q m v)))))%R)
  ->
  (forall (v : NatSet.elt) (m : mType),
      NatSet.mem v dVars = true ->
      typeExpression f2 (Var Q m v) = Some m ->
      exists vR : R,
        E v = Some (vR, M0) /\
        (Q2R (fst (fst (absenv (Var Q m v)))) <= vR <= Q2R (snd (fst (absenv (Var Q m v)))))%R).
Proof.
  intros.
  specialize (H0 v m H1).
  case_eq (typeExpression f1 (Var Q m v)); intros; auto.
  - case_eq (mTypeEqBool m1 m); intros.
    + (*apply EquivEqBoolEq in H4. ; rewrite <- H4 in H3.*)
      assert (typeExpression (Binop b f1 f2) (Var Q m v) = Some m).
      simpl typeExpression; rewrite H2, H3.
      rewrite H4; auto.
      apply EquivEqBoolEq in H4; rewrite H4; auto.
      specialize (H0 H5); auto.
    + pose proof (typingVarDet _ _ _ H3).
      rewrite H5 in H4.
      rewrite mTypeEqBool_refl in H4.
      inversion H4.
  - assert (typeExpression (Binop b f1 f2) (Var Q m v) = Some m) by (simpl; rewrite H2,H3; auto).
    specialize (H0 H4).
    auto.
Qed.
    
300
Theorem validIntervalbounds_sound (f:exp Q) (absenv:analysisResult) (P:precond) fVars dVars (E:env):
301 302
  forall vR m,
    (typeExpression f) f = Some m ->
303 304
    validIntervalbounds f absenv P dVars = true ->
    (forall v m, NatSet.mem v dVars = true ->
305 306
                 (typeExpression f) (Var Q m v) = Some m ->
                 exists vR, E v = Some (vR, M0) /\
307
                (Q2R (fst (fst (absenv (Var Q m v)))) <= vR <= Q2R (snd (fst (absenv (Var Q m v)))))%R) ->
Raphaël Monat's avatar
Raphaël Monat committed
308
    NatSet.Subset (NatSet.diff (Expressions.usedVars f) dVars) fVars ->
309
    (forall v, NatSet.mem v fVars = true ->
310
          exists vR, E v = Some (vR, M0) /\
311
                (Q2R (fst (P v)) <= vR <= Q2R (snd (P v)))%R) ->
312
    eval_exp E (toREval (toRExp f)) vR M0 ->
313
  (Q2R (fst (fst (absenv f))) <= vR <= Q2R (snd (fst (absenv f))))%R.
314
Proof.
315
  induction f; intros vR mf typing_ok valid_bounds valid_definedVars usedVars_subset valid_usedVars eval_f.
316
  - unfold validIntervalbounds in valid_bounds.
317
    env_assert absenv (Var Q m n) absenv_var.
318
    destruct absenv_var as [ iv [err absenv_var]].
Raphaël Monat's avatar
Raphaël Monat committed
319
    specialize (valid_usedVars n).
320
    simpl; rewrite absenv_var in *; simpl in *.
321
    inversion eval_f; subst.
322
    case_eq (NatSet.mem n dVars); intros case_mem; rewrite case_mem in *; simpl in *.
323 324
    + specialize (valid_definedVars n m case_mem).
      assert (mTypeEqBool m m && (n =? n) = true).
325
      apply andb_true_iff; split; [ apply EquivEqBoolEq | rewrite <- beq_nat_refl ]; auto.
326 327 328
      (* rewrite H in valid_definedVars. *)
      (* assert (Some m = Some m) by auto. *)
      (* specialize (valid_definedVars H0). *)
329
      destruct valid_definedVars as [vR' [E_n_eq precond_sound]].
330
      rewrite H; auto.
331
      rewrite E_n_eq in *.
332
      inversion H3; subst.
333
      rewrite absenv_var in *; auto.
334 335 336
    + repeat (rewrite delta_0_deterministic in *; try auto).
      unfold isSupersetIntv in valid_bounds.
      andb_to_prop valid_bounds.
337 338 339 340
      apply Qle_bool_iff in L0;
        apply Qle_bool_iff in R0.
      apply Qle_Rle in L0;
        apply Qle_Rle in R0.
341
      simpl in *.
342 343 344 345
      assert (NatSet.mem n fVars = true) as in_fVars.
      * assert (NatSet.In n (NatSet.singleton n))
          as in_singleton by (rewrite NatSet.singleton_spec; auto).
        rewrite NatSet.mem_spec.
Raphaël Monat's avatar
Raphaël Monat committed
346 347
        hnf in usedVars_subset.
        apply usedVars_subset.
348
        rewrite NatSet.diff_spec, NatSet.singleton_spec.
349
        split; try auto.
350 351 352
        hnf; intros in_dVars.
        rewrite <- NatSet.mem_spec in in_dVars.
        rewrite in_dVars in case_mem; congruence.
Raphaël Monat's avatar
Raphaël Monat committed
353 354
      * specialize (valid_usedVars in_fVars);
          destruct valid_usedVars as [vR' [vR_def P_valid]].
355
        rewrite vR_def in H3; inversion H3; subst.
356
        lra.
357
  - unfold validIntervalbounds in valid_bounds.
358
    simpl in *;  destruct (absenv (Const m v)) as [intv err]; simpl in *.
359 360
    apply Is_true_eq_left in valid_bounds.
    apply andb_prop_elim in valid_bounds.
Heiko Becker's avatar
Heiko Becker committed
361
    destruct valid_bounds as [valid_lo valid_hi].
Heiko Becker's avatar
Heiko Becker committed
362
    inversion eval_f; subst.
363
    rewrite delta_0_deterministic; auto.
364 365
    unfold contained; simpl.
    split.
Heiko Becker's avatar
Heiko Becker committed
366
    + apply Is_true_eq_true in valid_lo.
367
      unfold Qleb in *.
Heiko Becker's avatar
Heiko Becker committed
368 369 370 371 372 373
      apply Qle_bool_iff in valid_lo.
      apply Qle_Rle in valid_lo; auto.
    + apply Is_true_eq_true in valid_hi.
      unfold Qleb in *.
      apply Qle_bool_iff in valid_hi.
      apply Qle_Rle in valid_hi; auto.
374 375
    + simpl in H2; rewrite Q2R0_is_0 in H2; auto.
  - case_eq (absenv (Unop u f)); intros intv err absenv_unop.
Heiko Becker's avatar
Heiko Becker committed
376 377
    destruct intv as [unop_lo unop_hi]; simpl.
    unfold validIntervalbounds in valid_bounds.
378
    simpl in valid_bounds; rewrite absenv_unop in valid_bounds.
379
    case_eq (absenv f); intros intv_f err_f absenv_f.
Heiko Becker's avatar
Heiko Becker committed
380 381 382 383 384 385
    rewrite absenv_f in valid_bounds.
    apply Is_true_eq_left in valid_bounds.
    apply andb_prop_elim in valid_bounds.
    destruct valid_bounds as [valid_rec valid_unop].
    apply Is_true_eq_true in valid_rec.
    inversion eval_f; subst.
386 387
    + assert (typeExpression f f = Some mf) as typing_f_ok by (simpl typeExpression in typing_ok; rewrite expEqBool_refl in typing_ok; auto).
      specialize (IHf v1 mf typing_f_ok valid_rec valid_definedVars usedVars_subset valid_usedVars H3).
Heiko Becker's avatar
Heiko Becker committed
388
      rewrite absenv_f in IHf; simpl in IHf.
389 390 391 392 393 394
      (* TODO: Make lemma *)
      unfold isSupersetIntv in valid_unop.
      apply andb_prop_elim in valid_unop.
      destruct valid_unop as [valid_lo valid_hi].
      apply Is_true_eq_true in valid_lo; apply Is_true_eq_true in valid_hi.
      apply Qle_bool_iff in valid_lo; apply Qle_bool_iff in valid_hi.
395
      pose proof (interval_negation_valid (iv :=(Q2R (fst intv_f),(Q2R (snd intv_f)))) (a :=v1)) as negation_valid.
396 397 398
      unfold contained, negateInterval in negation_valid; simpl in *.
      apply Qle_Rle in valid_lo; apply Qle_Rle in valid_hi.
      destruct IHf.
399
      split.
400
      * eapply Rle_trans. apply valid_lo.
401 402
        rewrite Q2R_opp; lra.
      * eapply Rle_trans.
403
        Focus 2. apply valid_hi.
404
        rewrite Q2R_opp; lra.
405 406
    + assert (typeExpression f f = Some mf) as typing_f_ok by (simpl typeExpression in typing_ok; rewrite expEqBool_refl in typing_ok; auto).
      specialize (IHf v1 mf typing_f_ok valid_rec valid_definedVars usedVars_subset valid_usedVars H4).
Heiko Becker's avatar
Heiko Becker committed
407
      rewrite absenv_f in IHf; simpl in IHf.
408
      apply andb_prop_elim in valid_unop.
409
      destruct valid_unop as [nodiv0 valid_unop].
410 411 412 413 414 415 416 417 418 419 420 421
      (* TODO: Make lemma *)
      unfold isSupersetIntv in valid_unop.
      apply andb_prop_elim in valid_unop.
      destruct valid_unop as [valid_lo valid_hi].
      apply Is_true_eq_true in valid_lo; apply Is_true_eq_true in valid_hi.
      apply Qle_bool_iff in valid_lo; apply Qle_bool_iff in valid_hi.
      assert ((Q2R (ivhi intv_f) < 0)%R \/ (0 < Q2R (ivlo intv_f))%R) as nodiv0_prop.
       * apply Is_true_eq_true in nodiv0.
         apply le_neq_bool_to_lt_prop in nodiv0.
         destruct nodiv0.
         { left; rewrite <- Q2R0_is_0; apply Qlt_Rlt; auto. }
         { right; rewrite <- Q2R0_is_0; apply Qlt_Rlt; auto. }
422
       * pose proof (interval_inversion_valid (iv :=(Q2R (fst intv_f),(Q2R (snd intv_f)))) (a :=v1)) as inv_valid.
423 424 425
         unfold contained, invertInterval in inv_valid; simpl in *.
         apply Qle_Rle in valid_lo; apply Qle_Rle in valid_hi.
         destruct IHf.
426
         rewrite delta_0_deterministic; auto.
427
         unfold perturb; split.
428
         { eapply Rle_trans. apply valid_lo.
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
           destruct nodiv0_prop as [nodiv0_neg | nodiv0_pos].
           (* TODO: Extract lemma maybe *)
           - assert (0 < - (Q2R (snd intv_f)))%R as negation_pos by lra.
             assert (- (Q2R (snd intv_f)) <= - v1)%R as negation_flipped_hi by lra.
             apply Rinv_le_contravar in negation_flipped_hi; try auto.
             rewrite <- Ropp_inv_permute in negation_flipped_hi; try lra.
             rewrite <- Ropp_inv_permute in negation_flipped_hi; try lra.
             apply Ropp_le_contravar in negation_flipped_hi.
             repeat rewrite Ropp_involutive in negation_flipped_hi;
               rewrite Q2R_inv; auto.
             hnf; intros is_0.
             rewrite <- Q2R0_is_0 in nodiv0_neg.
             apply Rlt_Qlt in nodiv0_neg; lra.
           - rewrite Q2R_inv.
             apply Rinv_le_contravar; try lra.
             hnf; intros is_0.
             assert (Q2R (fst intv_f) <= Q2R (snd intv_f))%R by lra.
             rewrite <- Q2R0_is_0 in nodiv0_pos.
             apply Rlt_Qlt in nodiv0_pos; apply Rle_Qle in H2; lra.
         }
         { eapply Rle_trans.
450
           Focus 2. apply valid_hi.
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
           destruct nodiv0_prop as [nodiv0_neg | nodiv0_pos].
           - assert (Q2R (fst intv_f) < 0)%R as fst_lt_0 by lra.
             assert (0 < - (Q2R (fst intv_f)))%R as negation_pos by lra.
             assert (- v1 <= - (Q2R (fst intv_f)))%R as negation_flipped_lo by lra.
             apply Rinv_le_contravar in negation_flipped_lo; try auto.
             rewrite <- Ropp_inv_permute in negation_flipped_lo; try lra.
             rewrite <- Ropp_inv_permute in negation_flipped_lo; try lra.
             apply Ropp_le_contravar in negation_flipped_lo.
             repeat rewrite Ropp_involutive in negation_flipped_lo;
               rewrite Q2R_inv; auto.
             hnf; intros is_0.
             rewrite <- Q2R0_is_0 in negation_pos.
             rewrite <- Q2R_opp in negation_pos.
             apply Rlt_Qlt in negation_pos; lra.
             assert (0 < - (Q2R (snd intv_f)))%R by lra.
             lra.
           - rewrite Q2R_inv.
             apply Rinv_le_contravar; try lra.
             hnf; intros is_0.
             assert (Q2R (fst intv_f) <= Q2R (snd intv_f))%R by lra.
             rewrite <- Q2R0_is_0 in nodiv0_pos.
             apply Rlt_Qlt in nodiv0_pos; apply Rle_Qle in H2; lra.
         }
474
         { rewrite Q2R0_is_0 in H1; auto. }
475
  - inversion eval_f; subst.
476 477
    rewrite delta_0_deterministic in eval_f; auto.
    rewrite delta_0_deterministic; auto.
Heiko Becker's avatar
Heiko Becker committed
478
    simpl in valid_bounds.
479 480 481
    case_eq (absenv (Binop b f1 f2)); intros iv err absenv_bin.
    case_eq (absenv f1); intros iv1 err1 absenv_f1.
    case_eq (absenv f2); intros iv2 err2 absenv_f2.
482
    simpl.
Heiko Becker's avatar
Heiko Becker committed
483
    rewrite absenv_bin, absenv_f1, absenv_f2 in valid_bounds.
Heiko Becker's avatar
Heiko Becker committed
484 485 486 487 488 489
    apply Is_true_eq_left in valid_bounds.
    apply andb_prop_elim in valid_bounds.
    destruct valid_bounds as [valid_rec valid_bin].
    apply andb_prop_elim in valid_rec.
    destruct valid_rec as [valid_e1 valid_e2].
    apply Is_true_eq_true in valid_e1; apply Is_true_eq_true in  valid_e2.
490 491 492 493 494 495
    pose proof (validVarsUnfolding_l _ _ _ _ _ _ typing_ok valid_definedVars) as valid_definedVars_f1.
    pose proof (validVarsUnfolding_r _ _ _ _ _ _ typing_ok valid_definedVars) as valid_definedVars_f2.
    pose proof (binop_type_unfolding _ _ _ typing_ok) as subtypes.
    destruct subtypes as [mf1 [mf2 [typing_f1 [typing_f2 join_f1_f2]]]].
    specialize (IHf1 v1 mf1 typing_f1 valid_e1 valid_definedVars_f1).
      specialize (IHf2 v2 mf2 typing_f2 valid_e2 valid_definedVars_f2).
Heiko Becker's avatar
Heiko Becker committed
496 497
    rewrite absenv_f1 in IHf1.
    rewrite absenv_f2 in IHf2.
498 499 500
    assert ((Q2R (fst (fst (iv1, err1))) <= v1 <= Q2R (snd (fst (iv1, err1))))%R) as valid_bounds_e1.
    + apply IHf1; try auto.
      intros v in_diff_e1.
Raphaël Monat's avatar
Raphaël Monat committed
501
      apply usedVars_subset.
502 503
      simpl. rewrite NatSet.diff_spec,NatSet.union_spec.
      rewrite NatSet.diff_spec in in_diff_e1.
Raphaël Monat's avatar
Raphaël Monat committed
504
      destruct in_diff_e1 as [ in_usedVars not_dVar].
505
      split; try auto.
506
      assert (m1 = M0) by (apply (ifM0isJoin_l M0 m1 m2); auto); subst; auto.
507 508 509
    + assert (Q2R (fst (fst (iv2, err2))) <= v2 <= Q2R (snd (fst (iv2, err2))))%R as valid_bounds_e2.
      * apply IHf2; try auto.
        intros v in_diff_e2.
Raphaël Monat's avatar
Raphaël Monat committed
510
        apply usedVars_subset.
511 512 513
        simpl. rewrite NatSet.diff_spec, NatSet.union_spec.
        rewrite NatSet.diff_spec in in_diff_e2.
        destruct in_diff_e2; split; auto.
514
        assert (m2 = M0) by (apply (ifM0isJoin_r M0 m1 m2); auto); subst; auto.
515 516 517 518 519 520 521 522 523 524 525 526
      * destruct b; simpl in *.
        { pose proof (interval_addition_valid (iv1 :=(Q2R (fst iv1),Q2R (snd iv1))) (iv2 :=(Q2R (fst iv2), Q2R (snd iv2)))) as valid_add.
          unfold validIntervalAdd in valid_add.
          specialize (valid_add v1 v2 valid_bounds_e1 valid_bounds_e2).
          unfold contained in valid_add.
          unfold isSupersetIntv in valid_bin.
          apply andb_prop_elim in valid_bin; destruct valid_bin as [valid_lo valid_hi].
          apply Is_true_eq_true in valid_lo; apply Is_true_eq_true in valid_hi.
          apply Qle_bool_iff in valid_lo; apply Qle_bool_iff in valid_hi.
          apply Qle_Rle in valid_lo; apply Qle_Rle in valid_hi.
          destruct valid_add as [valid_add_lo valid_add_hi].
          split.
527
          - eapply Rle_trans. (*rewrite absenv_bin;*) apply valid_lo.
528 529 530 531 532 533 534
            unfold ivlo. unfold addIntv.
            simpl in valid_add_lo.
            repeat rewrite <- Q2R_plus in valid_add_lo.
            rewrite <- Q2R_min4 in valid_add_lo.
            unfold absIvUpd; auto.
          - eapply Rle_trans.
            Focus 2.
535
            (*rewrite absenv_bin;*) apply valid_hi.
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
            unfold ivlo, addIntv.
            simpl in valid_add_hi.
            repeat rewrite <- Q2R_plus in valid_add_hi.
            rewrite <- Q2R_max4 in valid_add_hi.
            unfold absIvUpd; auto. }
        { pose proof (interval_subtraction_valid (iv1 := (Q2R (fst iv1),Q2R (snd iv1))) (iv2 :=(Q2R (fst iv2), Q2R (snd iv2)))) as valid_sub.
          specialize (valid_sub v1 v2 valid_bounds_e1 valid_bounds_e2).
          unfold contained in valid_sub.
          unfold isSupersetIntv in valid_bin.
          apply andb_prop_elim in valid_bin; destruct valid_bin as [valid_lo valid_hi].
          apply Is_true_eq_true in valid_lo; apply Is_true_eq_true in valid_hi.
          apply Qle_bool_iff in valid_lo; apply Qle_bool_iff in valid_hi.
          apply Qle_Rle in valid_lo; apply Qle_Rle in valid_hi.
          destruct valid_sub as [valid_sub_lo valid_sub_hi].
          split.
551
          - eapply Rle_trans. (*rewrite absenv_bin;*) apply valid_lo.
552 553 554 555 556 557 558 559
            unfold ivlo. unfold subtractIntv.
            simpl in valid_sub_lo.
            repeat rewrite <- Rsub_eq_Ropp_Rplus in valid_sub_lo.
            repeat rewrite <- Q2R_minus in valid_sub_lo.
            rewrite <- Q2R_min4 in valid_sub_lo.
            unfold absIvUpd; auto.
          - eapply Rle_trans.
            Focus 2.
560
            (*rewrite absenv_bin;*) apply valid_hi.
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
            unfold ivlo, addIntv.
            simpl in valid_sub_hi.
            repeat rewrite <- Rsub_eq_Ropp_Rplus in valid_sub_hi.
            repeat rewrite <- Q2R_minus in valid_sub_hi.
            rewrite <- Q2R_max4 in valid_sub_hi.
            unfold absIvUpd; auto. }
        { pose proof (interval_multiplication_valid (iv1 :=(Q2R (fst iv1),Q2R (snd iv1))) (iv2:=(Q2R (fst iv2), Q2R (snd iv2)))) as valid_mul.
          specialize (valid_mul v1 v2 valid_bounds_e1 valid_bounds_e2).
          unfold contained in valid_mul.
          unfold isSupersetIntv in valid_bin.
          apply andb_prop_elim in valid_bin; destruct valid_bin as [valid_lo valid_hi].
          apply Is_true_eq_true in valid_lo; apply Is_true_eq_true in valid_hi.
          apply Qle_bool_iff in valid_lo; apply Qle_bool_iff in valid_hi.
          apply Qle_Rle in valid_lo; apply Qle_Rle in valid_hi.
          destruct valid_mul as [valid_mul_lo valid_mul_hi].
          split.
577
          - eapply Rle_trans. (*rewrite absenv_bin;*) apply valid_lo.
578 579 580 581 582 583 584
            unfold ivlo. unfold multIntv.
            simpl in valid_mul_lo.
            repeat rewrite <- Q2R_mult in valid_mul_lo.
            rewrite <- Q2R_min4 in valid_mul_lo.
            unfold absIvUpd; auto.
          - eapply Rle_trans.
            Focus 2.
585
            (*rewrite absenv_bin;*) apply valid_hi.
586 587 588 589 590 591
            unfold ivlo, addIntv.
            simpl in valid_mul_hi.
            repeat rewrite <- Q2R_mult in valid_mul_hi.
            rewrite <- Q2R_max4 in valid_mul_hi.
            unfold absIvUpd; auto. }
        { pose proof (interval_division_valid (a:=v1) (b:=v2) (iv1:=(Q2R (fst iv1), Q2R (snd iv1))) (iv2:=(Q2R (fst iv2),Q2R (snd iv2)))) as valid_div.
592
          rewrite <- andb_lazy_alt in valid_bin.
593 594
          unfold contained in valid_div.
          unfold isSupersetIntv in valid_bin.
595 596
          apply andb_prop_elim in valid_bin; destruct valid_bin as [nodiv0 valid_bin].
          (** CONTINUE **)
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
          apply andb_prop_elim in valid_bin; destruct valid_bin as [valid_lo valid_hi].
          apply Is_true_eq_true in valid_lo; apply Is_true_eq_true in valid_hi.
          apply Qle_bool_iff in valid_lo; apply Qle_bool_iff in valid_hi.
          apply Qle_Rle in valid_lo; apply Qle_Rle in valid_hi.
          apply orb_prop_elim in nodiv0.
          assert (snd iv2 < 0 \/ 0 < fst iv2).
          - destruct nodiv0 as [lt_0 | lt_0];
              apply andb_prop_elim in lt_0; destruct lt_0 as [le_0 neq_0];
                apply Is_true_eq_true in le_0; apply Is_true_eq_true in neq_0;
                  apply negb_true_iff in neq_0; apply Qeq_bool_neq in neq_0;
                    rewrite Qle_bool_iff in le_0;
                    rewrite Qle_lteq in le_0; destruct le_0 as [lt_0 | eq_0];
                      [ | exfalso; apply neq_0; auto | | exfalso; apply neq_0; symmetry; auto]; auto.
          - destruct valid_div as [valid_div_lo valid_div_hi]; simpl; try auto.
            + rewrite <- Q2R0_is_0.
              destruct H; [left | right]; apply Qlt_Rlt; auto.
            + unfold divideInterval, IVlo, IVhi in valid_div_lo, valid_div_hi.
              simpl in *.
              assert (Q2R (fst iv2) <= (Q2R (snd iv2)))%R by lra.
              assert (~ snd iv2 == 0).
              * destruct H; try lra.
                hnf; intros ivhi2_0.
                apply Rle_Qle in H0.
                rewrite ivhi2_0 in H0.
                lra.
              * assert (~ fst iv2 == 0).
                { destruct H; try lra.
                  hnf; intros ivlo2_0.
                  apply Rle_Qle in H0.
                  rewrite ivlo2_0 in H0.
                  lra. }
                { split.
629
                  - eapply Rle_trans. (*rewrite absenv_bin;*) apply valid_lo.
630 631 632 633 634 635 636 637
                    unfold ivlo. unfold multIntv.
                    simpl in valid_div_lo.
                    rewrite <- Q2R_inv in valid_div_lo; [ | auto].
                    rewrite <- Q2R_inv in valid_div_lo; [ | auto].
                    repeat rewrite <- Q2R_mult in valid_div_lo.
                    rewrite <- Q2R_min4 in valid_div_lo; auto.
                  - eapply Rle_trans.
                    Focus 2.
638
                    (*rewrite absenv_bin;*) apply valid_hi.
639 640 641 642 643
                    simpl in valid_div_hi.
                    rewrite <- Q2R_inv in valid_div_hi; [ | auto].
                    rewrite <- Q2R_inv in valid_div_hi; [ | auto].
                    repeat rewrite <- Q2R_mult in valid_div_hi.
                    rewrite <- Q2R_max4 in valid_div_hi; auto. } }
644 645 646
    + simpl in H3; rewrite Q2R0_is_0 in H3; auto.
    + simpl in H3; rewrite Q2R0_is_0 in H3; auto.
  - unfold validIntervalbounds in valid_bounds.
647 648
    (*simpl erasure in valid_bounds.*)
    simpl in *; destruct (absenv (Downcast m f)); destruct (absenv f); simpl in *.
649 650 651 652
    apply Is_true_eq_left in valid_bounds.
    apply andb_prop_elim in valid_bounds.
    destruct valid_bounds as [vI1 vI2].
    apply andb_prop_elim in vI2.
653
    destruct vI2 as [vI2 vI2'].
654 655 656 657 658 659 660
    apply Is_true_eq_true in vI2.
    apply Is_true_eq_true in vI2'.
    assert (isEqIntv i i0) as Eq by (apply supIntvAntisym; auto).
    destruct Eq as [Eqlo Eqhi].
    simpl in *.
    apply Qeq_eqR in Eqlo; rewrite Eqlo.
    apply Qeq_eqR in Eqhi; rewrite Eqhi.
661 662 663 664 665 666 667
    pose proof (expEqBool_refl (Downcast m f)); simpl in H; rewrite H in typing_ok.
    case_eq (typeExpression f f); intros; rewrite H0 in typing_ok.
    + case_eq (isMorePrecise m0 m); intros; rewrite H1 in typing_ok; inversion typing_ok.
      subst.
      apply (IHf vR m0); auto.
      apply Is_true_eq_true in vI1; auto.
    + inversion typing_ok.
668
Qed.
669

670

671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
(* Unused, proof not up-to-date *)
(* Theorem validIntervalboundsCmd_sound (f:cmd Q) (absenv:analysisResult): *)
(*   forall E vR fVars dVars outVars elo ehi err P, *)
(*     ssaPrg f (NatSet.union fVars dVars) outVars -> *)
(*     bstep (toREvalCmd (toRCmd f)) E vR M0  -> *)
(*     (forall v m, NatSet.mem v dVars = true -> *)
(*           exists vR, *)
(*             E v = Some (vR, m) /\ *)
(*             (Q2R (fst (fst (absenv (Var Q m v)))) <= vR <= Q2R (snd (fst (absenv (Var Q m v)))))%R) -> *)
(*     (forall v m, NatSet.mem v fVars = true -> *)
(*           exists vR, *)
(*             E v = Some (vR, m) /\ *)
(*             (Q2R (fst (P v)) <= vR <= Q2R (snd (P v)))%R) -> *)
(*     NatSet.Subset (NatSet.diff (Commands.freeVars f) dVars) fVars -> *)
(*     validIntervalboundsCmd f  absenv P dVars = true -> *)
(*     absenv (getRetExp f) = ((elo, ehi), err) -> *)
(*     (Q2R elo <=  vR <= Q2R ehi)%R. *)
(* Proof. *)
(*   induction f; *)
(*     intros *  ssa_f eval_f dVars_sound fVars_valid usedVars_subset valid_bounds_f absenv_f. *)
(*   - inversion ssa_f; subst. *)
(*     inversion eval_f; subst. *)
(*     unfold validIntervalboundsCmd in valid_bounds_f. *)
(*     andb_to_prop valid_bounds_f. *)
(*     inversion ssa_f; subst. *)
(*     specialize (IHf (updEnv n m v E) vR fVars (NatSet.add n dVars)). *)
(*     eapply IHf; eauto. *)
(*     + assert (NatSet.Equal (NatSet.add n (NatSet.union fVars dVars)) (NatSet.union fVars (NatSet.add n dVars))). *)
(*       * hnf. intros a; split; intros in_set. *)
(*         { rewrite NatSet.add_spec, NatSet.union_spec in in_set. *)
(*           rewrite NatSet.union_spec, NatSet.add_spec. *)
(*           destruct in_set as [P1 | [ P2 | P3]]; auto. } *)
(*         { rewrite NatSet.add_spec, NatSet.union_spec. *)
(*           rewrite NatSet.union_spec, NatSet.add_spec in in_set. *)
(*           destruct in_set as [P1 | [ P2 | P3]]; auto. } *)
(*       * eapply ssa_equal_set; eauto. *)
(*         symmetry; eauto. *)
(*     + admit. *)
(*     + *)
(*       intros v0 m0 mem_v0. *)
(*       unfold updEnv. *)
(*       case_eq (v0 =? n); intros v0_eq. *)
(*       * rename R1 into eq_lo; *)
(*           rename R0 into eq_hi. *)
(*         apply Qeq_bool_iff in eq_lo; *)
(*           apply Qeq_eqR in eq_lo. *)
(*         apply Qeq_bool_iff in eq_hi; *)
(*           apply Qeq_eqR in eq_hi. *)
(*         rewrite Nat.eqb_eq in v0_eq; subst. *)
(*         rewrite <- eq_lo, <- eq_hi. *)
(*         exists v; split; auto. *)
(*         eapply validIntervalbounds_sound; eauto. *)
(*         simpl in usedVars_subset. *)
(*         hnf. intros a in_usedVars. *)
(*         apply usedVars_subset. *)
(*         rewrite NatSet.diff_spec, NatSet.remove_spec, NatSet.union_spec. *)
(*         rewrite NatSet.diff_spec in in_usedVars. *)
(*         destruct in_usedVars as [ in_usedVars not_dVar]. *)
(*         repeat split; try auto. *)
(*         { hnf; intros; subst. *)
(*           specialize (H5 n in_usedVars). *)
(*           rewrite <- NatSet.mem_spec in H5. *)
(*           rewrite H5 in H6; congruence. } *)
(*       * apply dVars_sound. rewrite NatSet.mem_spec. *)
(*         rewrite NatSet.mem_spec in mem_v0. *)
(*         rewrite NatSet.add_spec in mem_v0. *)
(*         destruct mem_v0; try auto. *)
(*         rewrite Nat.eqb_neq in v0_eq. *)
(*         exfalso; apply v0_eq; auto. *)
(*     + intros v0 mem_fVars. *)
(*       unfold updEnv. *)
(*       case_eq (v0 =? n); intros case_v0; auto. *)
(*       rewrite Nat.eqb_eq in case_v0; subst. *)
(*       assert (NatSet.mem n (NatSet.union fVars dVars) = true) as in_union. *)
(*       * rewrite NatSet.mem_spec, NatSet.union_spec; rewrite <- NatSet.mem_spec; auto. *)
(*       * rewrite in_union in *; congruence. *)
(*     + clear L R1 R0 R IHf. *)
(*       hnf. intros a a_freeVar. *)
(*       rewrite NatSet.diff_spec in a_freeVar. *)
(*       destruct a_freeVar as [a_freeVar a_no_dVar]. *)
(*       apply usedVars_subset. *)
(*       simpl. *)
(*       rewrite NatSet.diff_spec, NatSet.remove_spec, NatSet.union_spec. *)
(*       repeat split; try auto. *)
(*       * hnf; intros; subst. *)
(*         apply a_no_dVar. *)
(*         rewrite NatSet.add_spec; auto. *)
(*       * hnf; intros a_dVar. *)
(*         apply a_no_dVar. *)
(*         rewrite NatSet.add_spec; auto. *)
(*   - unfold validIntervalboundsCmd in valid_bounds_f. *)
(*     inversion eval_f; subst. *)
(*     unfold updEnv. *)
(*     assert (Q2R (fst (fst (absenv (erasure e)))) <= vR <= Q2R (snd (fst (absenv (erasure e)))))%R. *)
(*     + simpl in valid_bounds_f; eapply validIntervalbounds_sound; eauto. *)
(*     + simpl in *. rewrite absenv_f in *; auto. *)
(* Qed. *)