Expressions.v 11.6 KB
Newer Older
1
(**
2
  Formalization of the base expression language for the daisy framework
3
 **)
4
Require Import Coq.Reals.Reals Coq.micromega.Psatz Coq.QArith.QArith Coq.QArith.Qreals.
5
Require Import Daisy.Infra.RealRationalProps Daisy.Infra.RationalSimps.
6
Require Export Daisy.Infra.Abbrevs Daisy.Infra.RealSimps Daisy.Infra.NatSet Daisy.IntervalArithQ Daisy.IntervalArith Daisy.Infra.MachineType.
7

8 9 10 11 12
(**
  Expressions will use binary operators.
  Define them first
**)
Inductive binop : Type := Plus | Sub | Mult | Div.
13

14
(** TODO: simplify pattern matching **)
15
Definition binopEqBool (b1:binop) (b2:binop) :=
16 17 18 19 20 21 22
  match b1 with
    Plus => match b2 with Plus => true |_ => false end
  | Sub => match b2 with Sub => true |_ => false end
  | Mult => match b2 with Mult => true |_ => false end
  | Div => match b2 with Div => true |_ => false end
  end.

23 24 25 26
(**
  Next define an evaluation function for binary operators on reals.
  Errors are added on the expression evaluation level later.
 **)
27
Definition evalBinop (o:binop) (v1:R) (v2:R) :=
28 29 30 31 32 33
  match o with
  | Plus => Rplus v1 v2
  | Sub => Rminus v1 v2
  | Mult => Rmult v1 v2
  | Div => Rdiv v1 v2
  end.
34

35 36 37 38 39 40
Lemma binopEqBool_refl b:
  binopEqBool b b = true.
Proof.
  case b; auto.
Qed.

41 42 43 44 45 46
(**
   Expressions will use unary operators.
   Define them first
 **)
Inductive unop: Type := Neg | Inv.

47
Definition unopEqBool (o1:unop) (o2:unop) :=
48 49 50 51 52 53 54
  match o1 with
  |Neg => match o2 with |Neg => true |_=> false end
  |Inv => match o2 with |Inv => true |_ => false end
  end.

(**
   Define evaluation for unary operators on reals.
55
   Errors are added in the expression evaluation level later.
56
 **)
57
Definition evalUnop (o:unop) (v:R):=
58 59 60 61 62
  match o with
  |Neg => (- v)%R
  |Inv => (/ v)%R
  end .

63 64


65
(**
66 67
  Define expressions parametric over some value type V.
  Will ease reasoning about different instantiations later.
68
**)
69
Inductive exp (V:Type): Type :=
70
  Var: mType -> nat -> exp V
71
| Const: mType -> V -> exp V
72
| Unop: unop -> exp V -> exp V
73 74
| Binop: binop -> exp V -> exp V -> exp V
| Downcast: mType -> exp V -> exp V.
75

76 77 78 79
(**
  Boolean equality function on expressions.
  Used in certificates to define the analysis result as function
**)
80
Fixpoint expEqBool (e1:exp Q) (e2:exp Q) :=
81
  match e1 with
82
  |Var _ m1 v1 =>
83
   match e2 with
84
   |Var _ m2 v2 => andb (mTypeEqBool m1 m2) (v1 =? v2)
85 86
   | _=> false
   end
87
  |Const m1 n1 =>
88
   match e2 with
89
   |Const m2 n2 => andb (mTypeEqBool m1 m2) (Qeq_bool n1 n2)
90 91
   | _=> false
   end
92 93
  |Unop o1 e11 =>
   match e2 with
94
   |Unop o2 e22 => andb (unopEqBool o1 o2) (expEqBool e11 e22)
95 96 97
   |_ => false
   end
  |Binop o1 e11 e12 =>
98
   match e2 with
99
   |Binop o2 e21 e22 => andb (binopEqBool o1 o2) (andb (expEqBool e11 e21) (expEqBool e12 e22))
100 101
   |_ => false
   end
102 103 104 105 106 107 108
  |Downcast m1 f1 =>
   match e2 with
   |Downcast m2 f2 => andb (mTypeEqBool m1 m2) (expEqBool f1 f2)
   |_ => false                   
   end
  end.

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

(* Lemma expEqBool_eq e1 e2: *)
(*   e1 = e2 -> *)
(*   expEqBool e1 e2 = true. *)
(* Proof. *)
(*   revert e1 e2. *)
(*   induction e1; intros; split; intros. *)
(*   - simpl in H. destruct e2; try inversion H; apply andb_true_iff in H; destruct H. *)
(*     f_equal. *)
(*     + apply EquivEqBoolEq; auto. *)
(*     + apply beq_nat_true; auto. *)
(*   - simpl. destruct e2; try inversion H. *)
(*     rewrite mTypeEqBool_refl. *)
(*     simpl. *)
(*     symmetry; apply beq_nat_refl. *)
(*   - simpl in H; destruct e2; try inversion H. apply andb_true_iff in H; destruct H. *)
(*     f_equal. *)
(*     + apply EquivEqBoolEq; auto. *)
(*     + admit. *)
(*   -  *)
      


    Lemma expEqBool_refl e:
133 134 135 136 137 138 139 140 141 142
  expEqBool e e = true.
Proof.
  induction e; apply andb_true_iff; split; simpl in *; auto; try (apply EquivEqBoolEq; auto). 
  - symmetry; apply beq_nat_refl.
  - apply Qeq_bool_iff; lra.
  - case u; auto.
  - case b; auto.
  - apply andb_true_iff; split.
    apply IHe1. apply IHe2.
Qed.
143

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
Lemma beq_nat_sym a b:
  beq_nat a b = beq_nat b a.
Proof.
  case_eq (a =? b); intros.
  - apply beq_nat_true in H.
    rewrite H.
    apply beq_nat_refl. 
  - apply beq_nat_false in H.
    case_eq (b =? a); intros.
    + apply beq_nat_true in H0.
      rewrite H0 in H.
      auto.
    + auto.
Qed.      

Lemma expEqBool_sym e e':
  expEqBool e e' = expEqBool e' e.
Proof.
  revert e'.
  induction e; intros e'; destruct e'; simpl; try auto.
  - f_equal.
    + apply mTypeEqBool_sym; auto.
    + apply beq_nat_sym.
  - f_equal.
    + apply mTypeEqBool_sym; auto.
    + apply Qeq_bool_sym.
  - f_equal.
    + destruct u; auto.
    + apply IHe.
  - f_equal.      
    + destruct b; auto.
    + f_equal.
      * apply IHe1.
      * apply IHe2.
  - f_equal.
    + apply mTypeEqBool_sym; auto.
    + apply IHe.
Qed.

183 184 185
Fixpoint toRExp (e:exp Q) :=
  match e with
  |Var _ m v => Var R m v
186
  |Const m n => Const m (Q2R n)
187 188 189 190 191 192 193 194
  |Unop o e1 => Unop o (toRExp e1)
  |Binop o e1 e2 => Binop o (toRExp e1) (toRExp e2)
  |Downcast m e1 => Downcast m (toRExp e1)
  end.

Fixpoint toREval (e:exp R) :=
  match e with
  | Var _ _ v => Var R M0 v
195
  | Const _ n => Const M0 n
196 197
  | Unop o e1 => Unop o (toREval e1)
  | Binop o e1 e2 => Binop o (toREval e1) (toREval e2)
198
  | Downcast _ e1 =>  (toREval e1)
199
  end.
200

201 202 203 204 205 206 207 208 209
Definition toREvalEnv (E:env) : env :=
  fun (n:nat) =>
    let s := (E n) in
    match s with
    | None => None
    | Some (r, _) => Some (r, M0)
    end.


210 211 212 213
(**
  Define a perturbation function to ease writing of basic definitions
**)
Definition perturb (r:R) (e:R) :=
214
  (r * (1 + e))%R.
Heiko Becker's avatar
Heiko Becker committed
215

216
(**
217
Define expression evaluation relation parametric by an "error" epsilon.
218 219 220
The result value expresses float computations according to the IEEE standard,
using a perturbation of the real valued computation by (1 + delta), where
|delta| <= machine epsilon.
221
**)
222
Inductive eval_exp (E:env) :(exp R) -> R -> mType -> Prop :=
223 224
| Var_load m m1 x v:
    isMorePrecise m m1 = true ->
225
    (**mTypeEqBool m m1 = true ->*)
226
    E x = Some (v, m1) ->
227
    eval_exp E (Var R m x) v m
228 229
| Const_dist m n delta:
    Rle (Rabs delta) (Q2R (meps m)) ->
230
    eval_exp E (Const m n) (perturb n delta) m
231 232 233 234 235 236 237 238 239 240 241 242 243 244
| Unop_neg m f1 v1:
    eval_exp E f1 v1 m ->
    eval_exp E (Unop Neg f1) (evalUnop Neg v1) m
| Unop_inv m f1 v1 delta:
    Rle (Rabs delta) (Q2R (meps m)) ->
    eval_exp E f1 v1 m ->
    eval_exp E (Unop Inv f1) (perturb (evalUnop Inv v1) delta) m
| Binop_dist m m1 m2 op f1 f2 v1 v2 delta:
    isJoinOf m m1 m2 = true ->
    Rle (Rabs delta) (Q2R (meps m)) ->
    eval_exp E f1 v1 m1 ->
    eval_exp E f2 v2 m2 ->
    eval_exp E (Binop op f1 f2) (perturb (evalBinop op v1 v2) delta) m
| Downcast_dist m m1 f1 v1 delta:
245
    (* Downcast expression f1 (evaluating to machine type m1), to a machine type m, less precise than m1.*)
246 247 248 249
    isMorePrecise m1 m = true ->
    Rle (Rabs delta) (Q2R (meps m)) ->
    eval_exp E f1 v1 m1 ->
    eval_exp E (Downcast m f1) (perturb v1 delta) m.
250

251 252 253 254 255
(**
  Define the set of "used" variables of an expression to be the set of variables
  occuring in it
**)
Fixpoint usedVars (V:Type) (e:exp V) :NatSet.t :=
256
  match e with
257
  | Var _ _ x => NatSet.singleton x
258 259
  | Unop u e1 => usedVars e1
  | Binop b e1 e2 => NatSet.union (usedVars e1) (usedVars e2)
260
  | Downcast _ e1 => usedVars e1
261 262
  | _ => NatSet.empty
  end.
263

264
(**
265
  If |delta| <= 0 then perturb v delta is exactly v.
266
**)
267
Lemma delta_0_deterministic (v:R) (delta:R):
Heiko Becker's avatar
Heiko Becker committed
268 269 270 271 272
  (Rabs delta <= 0)%R ->
  perturb v delta = v.
Proof.
  intros abs_0; apply Rabs_0_impl_eq in abs_0; subst.
  unfold perturb.
273
  lra.
Heiko Becker's avatar
Heiko Becker committed
274 275
Qed.

276 277
    
Lemma general_meps_0_deterministic (f:exp R) (E:env):
278 279
  forall v1 v2 m1,
    m1 = M0 ->
280
    eval_exp E (toREval f) v1 m1 ->
281
    eval_exp E (toREval f) v2 M0 ->
282 283
    v1 = v2.
Proof.
284
  induction f; intros v1 v2 m1 m10_eq eval_v1 eval_v2.
285 286
  - inversion eval_v1; inversion eval_v2; subst; auto;
      try repeat (repeat rewrite delta_0_deterministic; simpl in *; rewrite Q2R0_is_0 in *; subst; auto); simpl.
287
    rewrite H9 in H4; inversion H4; subst; auto.
288 289 290 291
  - inversion eval_v1; inversion eval_v2; subst; auto;
      try repeat (repeat rewrite delta_0_deterministic; simpl in *; rewrite Q2R0_is_0 in *; subst; auto); simpl.
  - inversion eval_v1; inversion eval_v2; subst; auto;
      try repeat (repeat rewrite delta_0_deterministic; simpl in *; rewrite Q2R0_is_0 in *; subst; auto); simpl.
292
    + apply Ropp_eq_compat. apply (IHf v0 v3 M0); auto.     
293 294
    + inversion H4.
    + inversion H5.
295
    + rewrite (IHf v0 v3 M0); auto.
296 297
  - inversion eval_v1; inversion eval_v2; subst; auto;
      try repeat (repeat rewrite delta_0_deterministic; simpl in *; rewrite Q2R0_is_0 in *; subst; auto); simpl.
298 299 300 301 302 303 304 305
    assert (M0 = M0) as M00 by auto.
    pose proof (ifM0isJoin_l M0 m0 m2 M00 H2); auto.
    pose proof (ifM0isJoin_r M0 m0 m2 M00 H2); auto.
    pose proof (ifM0isJoin_l M0 m4 m5 M00 H11); auto.
    pose proof (ifM0isJoin_r M0 m4 m5 M00 H11); auto.
    subst.
    rewrite (IHf1 v0 v4 M0); auto.
    rewrite (IHf2 v5 v3 M0); auto.
306 307
  - simpl toREval in eval_v1.
    simpl toREval in eval_v2.
308
    apply (IHf v1 v2 m1); auto.
309 310 311 312
Qed.


  
313
(**
314
Evaluation with 0 as machine epsilon is deterministic
315
**)
316
Lemma meps_0_deterministic (f:exp R) (E:env):
317
  forall v1 v2,
318 319
  eval_exp E (toREval f) v1 M0 ->
  eval_exp E (toREval f) v2 M0 ->
320 321
  v1 = v2.
Proof.
322
  intros v1 v2 ev1 ev2.
323 324
  assert (M0 = M0) by auto.
  apply (general_meps_0_deterministic f H ev1 ev2). 
325 326
Qed.

327

328 329 330 331
(**
Helping lemma. Needed in soundness proof.
For each evaluation of using an arbitrary epsilon, we can replace it by
evaluating the subexpressions and then binding the result values to different
332
variables in the Environment.
333
**)
334 335 336 337 338 339 340
Lemma binary_unfolding b f1 f2 m E vF:
  eval_exp E (Binop b f1 f2) vF m ->
  exists vF1 vF2 m1 m2,
  eval_exp E f1 vF1 m1 /\
  eval_exp E f2 vF2 m2 /\
  eval_exp  (updEnv 2 m2 vF2 (updEnv 1 m1 vF1 emptyEnv))
           (Binop b (Var R m1 1) (Var R m2 2)) vF m.
341
Proof.
342 343
  intros eval_float.
  inversion eval_float; subst.
344 345 346 347 348 349 350 351
  exists v1 ; exists v2; exists m1; exists m2; repeat split; try auto.
  eapply Binop_dist; eauto.
  pose proof (isMorePrecise_refl m1).
  eapply Var_load; eauto.
  pose proof (isMorePrecise_refl m2).
  (* unfold mTypeEqBool; apply Qeq_bool_iff; apply Qeq_refl. *)
  eapply Var_load; eauto.
  (* unfold mTypeEqBool; apply Qeq_bool_iff; apply Qeq_refl. *)
352 353
Qed.

354 355 356 357 358 359 360 361
(* (** *)
(* Analogous lemma for unary expressions. *)
(* **) *)
Lemma unary_unfolding (e:exp R) (m:mType) (E:env) (v:R):
  (eval_exp E (Unop Inv e) v m ->
   exists v1 m1,
     eval_exp E e v1 m1 /\
     eval_exp (updEnv 1 m1 v1 E) (Unop Inv (Var R m1 1)) v m).
362
Proof.
363
  intros eval_un.
364
    inversion eval_un; subst.
365
    exists v1; exists m.
366
    repeat split; try auto.
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
    econstructor; try auto.
    pose proof (isMorePrecise_refl m).
    econstructor; eauto.
  (* - intros exists_val. *)
  (*   destruct exists_val as [v1 [m1 [eval_f1 eval_e_E]]]. *)
  (*   inversion eval_e_E; subst. *)
  (*   inversion H1; subst. *)
  (*   econstructor; eauto. *)
  (*   unfold updEnv in H6. *)
  (*   simpl in H6. *)
  (*   inversion H6. *)
  (*   rewrite <- H2. *)
    
  (*   rewrite <- H1. *)
  (*   auto. *)
382
Qed.
383

384 385 386 387 388 389
(**
  Using the parametric expressions, define boolean expressions for conditionals
**)
Inductive bexp (V:Type) : Type :=
  leq: exp V -> exp V -> bexp V
| less: exp V -> exp V -> bexp V.
390

391
(**
392
  Define evaluation of boolean expressions
393
 **)
394 395 396 397 398 399 400 401 402 403 404 405 406 407
(* Inductive bval (E:env): (bexp R) -> Prop -> Prop := *)
(*   leq_eval (f1:exp R) (f2:exp R) (v1:R) (v2:R): *)
(*     eval_exp E f1 v1 -> *)
(*     eval_exp E f2 v2 -> *)
(*     bval E (leq f1 f2) (Rle v1 v2) *)
(* |less_eval (f1:exp R) (f2:exp R) (v1:R) (v2:R): *)
(*     eval_exp E f1 v1 -> *)
(*     eval_exp E f2 v2 -> *)
(*     bval E (less f1 f2) (Rlt v1 v2). *)
(* (** *)
(*  Simplify arithmetic later by making > >= only abbreviations *)
(* **) *)
(* Definition gr := fun (V:Type) (f1: exp V) (f2: exp V) => less f2 f1. *)
(* Definition greq := fun (V:Type) (f1:exp V) (f2: exp V) => leq f2 f1. *)