IntervalValidation.v 29 KB
Newer Older
Heiko Becker's avatar
Heiko Becker committed
1
(**
Heiko Becker's avatar
Heiko Becker committed
2 3 4 5 6
    Interval arithmetic checker and its soundness proof.
    The function validIntervalbounds checks wether the given analysis result is
    a valid range arithmetic for each sub term of the given expression e.
    The computation is done using our formalized interval arithmetic.
    The function is used in CertificateChecker.v to build the full checker.
Heiko Becker's avatar
Heiko Becker committed
7
**)
8
Require Import Coq.QArith.QArith Coq.QArith.Qreals QArith.Qminmax Coq.Lists.List Coq.micromega.Psatz.
9
Require Import Daisy.Infra.Abbrevs Daisy.Infra.RationalSimps Daisy.Infra.RealRationalProps.
10
Require Import Daisy.Infra.Ltacs Daisy.Infra.RealSimps Daisy.Typing.
11
Require Export Daisy.IntervalArithQ Daisy.IntervalArith Daisy.ssaPrgs.
12

13
Fixpoint validIntervalbounds (e:exp Q) (absenv:analysisResult) (P:precond) (validVars:NatSet.t) :=
14 15
  let (intv, _) := absenv e in
    match e with
16
    | Var _ _ v =>
17 18 19
      if NatSet.mem v validVars
      then true
      else isSupersetIntv (P v) intv && (Qleb (ivlo (P v)) (ivhi (P v)))
20
    | Const _ n => isSupersetIntv (n,n) intv
Heiko Becker's avatar
Heiko Becker committed
21
    | Unop o f =>
22 23 24
      if validIntervalbounds f absenv P validVars
      then
        let (iv, _) := absenv f in
Heiko Becker's avatar
Heiko Becker committed
25
        match o with
26
        | Neg =>
Heiko Becker's avatar
Heiko Becker committed
27
          let new_iv := negateIntv iv in
28 29
          isSupersetIntv new_iv intv
        | Inv =>
30 31 32 33 34 35
          if (((Qleb (ivhi iv) 0) && (negb (Qeq_bool (ivhi iv) 0))) ||
              ((Qleb 0 (ivlo iv)) && (negb (Qeq_bool (ivlo iv) 0))))
          then
            let new_iv := invertIntv iv in
            isSupersetIntv new_iv intv
          else false
Heiko Becker's avatar
Heiko Becker committed
36
        end
37
      else false
Heiko Becker's avatar
Heiko Becker committed
38
    | Binop op f1 f2 =>
39 40 41 42 43
      if ((validIntervalbounds f1 absenv P validVars) &&
          (validIntervalbounds f2 absenv P validVars))
      then
        let (iv1,_) := absenv f1 in
        let (iv2,_) := absenv f2 in
Heiko Becker's avatar
Heiko Becker committed
44
          match op with
45 46 47 48 49 50 51 52 53
          | Plus =>
            let new_iv := addIntv iv1 iv2 in
            isSupersetIntv new_iv intv
          | Sub =>
            let new_iv := subtractIntv iv1 iv2 in
            isSupersetIntv new_iv intv
          | Mult =>
            let new_iv := multIntv iv1 iv2 in
            isSupersetIntv new_iv intv
Heiko Becker's avatar
Heiko Becker committed
54
          | Div =>
55 56 57 58 59 60
            if (((Qleb (ivhi iv2) 0) && (negb (Qeq_bool (ivhi iv2) 0))) ||
                ((Qleb 0 (ivlo iv2)) && (negb (Qeq_bool (ivlo iv2) 0))))
            then
              let new_iv := divideIntv iv1 iv2 in
              isSupersetIntv new_iv intv
            else false
61
          end
62
      else false
63
    | Downcast _ f1 =>
64 65 66
      let (iv1, _) := absenv f1 in
      andb (validIntervalbounds f1 absenv P validVars) (andb (isSupersetIntv intv iv1) (isSupersetIntv iv1 intv))
           (* TODO: intv = iv1 might be a hard constraint... *)
67 68
    end.

69
Fixpoint validIntervalboundsCmd (f:cmd Q) (absenv:analysisResult) (P:precond) (validVars:NatSet.t) :bool:=
70
  match f with
71
  | Let m x e g =>
72
    if (validIntervalbounds e absenv P validVars &&
73 74
        Qeq_bool (fst (fst (absenv e))) (fst (fst (absenv (Var Q m x)))) &&
        Qeq_bool (snd (fst (absenv e))) (snd (fst (absenv (Var Q m x)))))
75 76
    then validIntervalboundsCmd g absenv P (NatSet.add x validVars)
    else false
77 78
  |Ret e =>
   validIntervalbounds e absenv P validVars
79 80
  end.

81
Theorem ivbounds_approximatesPrecond_sound f absenv P V Gamma:
82
  validIntervalbounds f absenv P V = true ->
83 84 85
  (exists mF, validType Gamma f mF) ->
  forall v, NatSet.In v (NatSet.diff (Expressions.usedVars f) V) ->
       exists m, Gamma (Var Q m v) = Some m /\
='s avatar
= committed
86
         Is_true(isSupersetIntv (P v) (fst (absenv (Var Q m v)))).
87
Proof.
Heiko Becker's avatar
Heiko Becker committed
88
  induction f; unfold validIntervalbounds.
89
  - simpl. intros approx_true valid_tf v v_in_fV; simpl in *.
='s avatar
= committed
90
    inversion valid_tf; subst.
91 92 93
    rewrite NatSet.diff_spec in v_in_fV.
    rewrite NatSet.singleton_spec in v_in_fV;
      destruct v_in_fV; subst.
94 95 96
    destruct valid_tf as [mF valid_tf].
    inversion valid_tf; subst.
    exists mF; split; auto.
='s avatar
= committed
97
    destruct (absenv (Var Q mF n)); simpl in *.
98 99 100 101
    case_eq (NatSet.mem n V); intros case_mem;
      rewrite case_mem in approx_true; simpl in *.
    + rewrite NatSet.mem_spec in case_mem.
      contradiction.
102 103 104
    + apply Is_true_eq_left in approx_true.
      apply andb_prop_elim in approx_true.
      destruct approx_true; auto.
105
  - intros approx_true valid_tf v0 v_in_fV; simpl in *.
106
    inversion v_in_fV. 
107
  - intros approx_unary_true valid_tf v v_in_fV; simpl in *.  
Heiko Becker's avatar
Heiko Becker committed
108
    apply Is_true_eq_left in approx_unary_true.
109
    simpl in *.
Heiko Becker's avatar
Heiko Becker committed
110 111 112 113
    destruct (absenv (Unop u f)); destruct (absenv f); simpl in *.
    apply andb_prop_elim in approx_unary_true.
    destruct approx_unary_true.
    apply IHf; try auto.
114 115 116 117 118
    + apply Is_true_eq_true; auto.
    + destruct valid_tf as [mF valid_tf].
      inversion valid_tf; subst; auto.
      exists mF; auto.
  - intros approx_bin_true valid_tf v v_in_fV.
119 120 121 122
    simpl in v_in_fV.
    rewrite NatSet.diff_spec in v_in_fV.
    destruct v_in_fV as [ v_in_fV v_not_in_V].
    rewrite NatSet.union_spec in v_in_fV.
123
    apply Is_true_eq_left in approx_bin_true.
124 125 126 127
    destruct valid_tf as [mf valid_tf].
    inversion valid_tf; subst.
    destruct (absenv (Binop b f1 f2)); destruct (absenv f1);
      destruct (absenv f2); simpl in *.
128 129 130 131
    apply andb_prop_elim in approx_bin_true.
    destruct approx_bin_true.
    apply andb_prop_elim in H.
    destruct H.
132
    destruct v_in_fV.
133 134 135 136 137 138 139 140 141
    + apply IHf1; try auto.
      * apply Is_true_eq_true; auto.
      * eauto.
      * rewrite NatSet.diff_spec; split; auto.
    + apply IHf2; try auto.
      * apply Is_true_eq_true; auto.
      * eauto.
      * rewrite NatSet.diff_spec; split; auto.
  - intros approx_rnd_true [mf valid_tf] v v_in_fV.
142
    simpl in *; destruct (absenv (Downcast m f)); destruct (absenv f).
143 144 145 146
    apply Is_true_eq_left in approx_rnd_true.
    apply andb_prop_elim in approx_rnd_true.
    destruct approx_rnd_true.
    apply IHf; auto.
147 148
    apply Is_true_eq_true in H; try auto.
    inversion valid_tf; subst; eauto.
149 150
Qed.

Heiko Becker's avatar
Heiko Becker committed
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
Corollary Q2R_max4 a b c d:
  Q2R (IntervalArithQ.max4 a b c d) = max4 (Q2R a) (Q2R b) (Q2R c) (Q2R d).
Proof.
  unfold IntervalArithQ.max4, max4; repeat rewrite Q2R_max; auto.
Qed.

Corollary Q2R_min4 a b c d:
  Q2R (IntervalArithQ.min4 a b c d) = min4 (Q2R a) (Q2R b) (Q2R c) (Q2R d).
Proof.
  unfold IntervalArith.min4, min4; repeat rewrite Q2R_min; auto.
Qed.

Ltac env_assert absenv e name :=
  assert (exists iv err, absenv e = (iv,err)) as name by (destruct (absenv e); repeat eexists; auto).

166

167
Lemma validBoundsDiv_uneq_zero e1 e2 absenv P V ivlo_e2 ivhi_e2 err:
168
  absenv e2 = ((ivlo_e2,ivhi_e2), err) ->
169
  validIntervalbounds (Binop Div e1 e2) absenv P V = true ->
170 171 172 173 174 175 176
  (ivhi_e2 < 0) \/ (0 < ivlo_e2).
Proof.
  intros absenv_eq validBounds.
  unfold validIntervalbounds in validBounds.
  env_assert absenv (Binop Div e1 e2) abs_div; destruct abs_div as [iv_div [err_div abs_div]].
  env_assert absenv e1 abs_e1; destruct abs_e1 as [iv_e1 [err_e1 abs_e1]].
  rewrite abs_div, abs_e1, absenv_eq in validBounds.
177
  repeat (rewrite <- andb_lazy_alt in validBounds).
178 179 180
  apply Is_true_eq_left in validBounds.
  apply andb_prop_elim in validBounds.
  destruct validBounds as [_ validBounds]; apply andb_prop_elim in validBounds.
181
  destruct validBounds as [nodiv0 _].
182
  apply Is_true_eq_true in nodiv0.
183
  unfold isSupersetIntv in *; simpl in *.
184
  apply le_neq_bool_to_lt_prop; auto.
185
Qed.
186
    
187
Theorem validIntervalbounds_sound (f:exp Q) (absenv:analysisResult) (P:precond) fVars dVars (E:env) Gamma:
188
  forall vR m,
189
    validType Gamma f m ->
190
    validIntervalbounds f absenv P dVars = true ->
191 192 193
    (forall v mV, NatSet.mem v dVars = true ->
          exists vR mv, E v = Some (vR, M0) /\ Gamma (Var Q mv v) = Some mV /\
                (Q2R (fst (fst (absenv (Var Q mV v)))) <= vR <= Q2R (snd (fst (absenv (Var Q mV v)))))%R) ->
Raphaël Monat's avatar
Raphaël Monat committed
194
    NatSet.Subset (NatSet.diff (Expressions.usedVars f) dVars) fVars ->
195
    (forall v, NatSet.mem v fVars = true ->
196
          exists vR, E v = Some (vR, M0) /\
197
                (Q2R (fst (P v)) <= vR <= Q2R (snd (P v)))%R) ->
198
    eval_exp E (toREval (toRExp f)) vR M0 ->
199
  (Q2R (fst (fst (absenv f))) <= vR <= Q2R (snd (fst (absenv f))))%R.
200
Proof.
201
  induction f; intros vR mf typing_ok valid_bounds valid_definedVars usedVars_subset valid_usedVars eval_f.
202
  - unfold validIntervalbounds in valid_bounds.
203
    env_assert absenv (Var Q m n) absenv_var.
204
    destruct absenv_var as [ iv [err absenv_var]].
Raphaël Monat's avatar
Raphaël Monat committed
205
    specialize (valid_usedVars n).
206
    simpl; rewrite absenv_var in *; simpl in *.
207
    inversion eval_f; subst.
208
    case_eq (NatSet.mem n dVars); intros case_mem; rewrite case_mem in *; simpl in *.
209
    + specialize (valid_definedVars n m case_mem).
210 211 212
      inversion typing_ok; subst.
      destruct valid_definedVars as [vR' [mv [E_n_eq [gamma_n iv_n]]]].
      rewrite H2 in E_n_eq; inversion E_n_eq; subst.
213
      rewrite absenv_var in *; auto.
214 215 216
    + repeat (rewrite delta_0_deterministic in *; try auto).
      unfold isSupersetIntv in valid_bounds.
      andb_to_prop valid_bounds.
217 218 219 220
      apply Qle_bool_iff in L0;
        apply Qle_bool_iff in R0.
      apply Qle_Rle in L0;
        apply Qle_Rle in R0.
221
      simpl in *.
222 223 224 225
      assert (NatSet.mem n fVars = true) as in_fVars.
      * assert (NatSet.In n (NatSet.singleton n))
          as in_singleton by (rewrite NatSet.singleton_spec; auto).
        rewrite NatSet.mem_spec.
Raphaël Monat's avatar
Raphaël Monat committed
226 227
        hnf in usedVars_subset.
        apply usedVars_subset.
228
        rewrite NatSet.diff_spec, NatSet.singleton_spec.
229
        split; try auto.
230 231 232
        hnf; intros in_dVars.
        rewrite <- NatSet.mem_spec in in_dVars.
        rewrite in_dVars in case_mem; congruence.
Raphaël Monat's avatar
Raphaël Monat committed
233 234
      * specialize (valid_usedVars in_fVars);
          destruct valid_usedVars as [vR' [vR_def P_valid]].
235
        rewrite vR_def in H2; inversion H2; subst.
236
        lra.
237
  - unfold validIntervalbounds in valid_bounds.
238
    simpl in *;  destruct (absenv (Const m v)) as [intv err]; simpl in *.
239 240
    apply Is_true_eq_left in valid_bounds.
    apply andb_prop_elim in valid_bounds.
Heiko Becker's avatar
Heiko Becker committed
241
    destruct valid_bounds as [valid_lo valid_hi].
Heiko Becker's avatar
Heiko Becker committed
242
    inversion eval_f; subst.
243
    rewrite delta_0_deterministic; auto.
244 245
    unfold contained; simpl.
    split.
Heiko Becker's avatar
Heiko Becker committed
246
    + apply Is_true_eq_true in valid_lo.
247
      unfold Qleb in *.
Heiko Becker's avatar
Heiko Becker committed
248 249 250 251 252 253
      apply Qle_bool_iff in valid_lo.
      apply Qle_Rle in valid_lo; auto.
    + apply Is_true_eq_true in valid_hi.
      unfold Qleb in *.
      apply Qle_bool_iff in valid_hi.
      apply Qle_Rle in valid_hi; auto.
254
    + simpl in H2; rewrite Q2R0_is_0 in H2; auto.
255
  - case_eq (absenv (Unop u f)); intros intv err absenv_unop.
Heiko Becker's avatar
Heiko Becker committed
256 257
    destruct intv as [unop_lo unop_hi]; simpl.
    unfold validIntervalbounds in valid_bounds.
258
    simpl in valid_bounds; rewrite absenv_unop in valid_bounds.
Heiko Becker's avatar
Heiko Becker committed
259 260 261 262 263 264 265
    case_eq (absenv f); intros intv_f err_f absenv_f.
    rewrite absenv_f in valid_bounds.
    apply Is_true_eq_left in valid_bounds.
    apply andb_prop_elim in valid_bounds.
    destruct valid_bounds as [valid_rec valid_unop].
    apply Is_true_eq_true in valid_rec.
    inversion eval_f; subst.
='s avatar
= committed
266
    + inversion typing_ok; subst.
267
      specialize (IHf v1 mf H1 valid_rec valid_definedVars usedVars_subset valid_usedVars H3).
Heiko Becker's avatar
Heiko Becker committed
268
      rewrite absenv_f in IHf; simpl in IHf.
269 270 271 272 273 274
      (* TODO: Make lemma *)
      unfold isSupersetIntv in valid_unop.
      apply andb_prop_elim in valid_unop.
      destruct valid_unop as [valid_lo valid_hi].
      apply Is_true_eq_true in valid_lo; apply Is_true_eq_true in valid_hi.
      apply Qle_bool_iff in valid_lo; apply Qle_bool_iff in valid_hi.
275
      pose proof (interval_negation_valid (iv :=(Q2R (fst intv_f),(Q2R (snd intv_f)))) (a :=v1)) as negation_valid.
276 277 278
      unfold contained, negateInterval in negation_valid; simpl in *.
      apply Qle_Rle in valid_lo; apply Qle_Rle in valid_hi.
      destruct IHf.
279
      split.
280 281 282 283 284
      * eapply Rle_trans. apply valid_lo.
        rewrite Q2R_opp; lra.
      * eapply Rle_trans.
        Focus 2. apply valid_hi.
        rewrite Q2R_opp; lra.
='s avatar
= committed
285
    + inversion typing_ok; subst.
286
      specialize (IHf v1 mf H2 valid_rec valid_definedVars usedVars_subset valid_usedVars H4).
Heiko Becker's avatar
Heiko Becker committed
287
      rewrite absenv_f in IHf; simpl in IHf.
288
      apply andb_prop_elim in valid_unop.
289
      destruct valid_unop as [nodiv0 valid_unop].
290 291 292 293 294 295 296 297 298 299 300 301
      (* TODO: Make lemma *)
      unfold isSupersetIntv in valid_unop.
      apply andb_prop_elim in valid_unop.
      destruct valid_unop as [valid_lo valid_hi].
      apply Is_true_eq_true in valid_lo; apply Is_true_eq_true in valid_hi.
      apply Qle_bool_iff in valid_lo; apply Qle_bool_iff in valid_hi.
      assert ((Q2R (ivhi intv_f) < 0)%R \/ (0 < Q2R (ivlo intv_f))%R) as nodiv0_prop.
       * apply Is_true_eq_true in nodiv0.
         apply le_neq_bool_to_lt_prop in nodiv0.
         destruct nodiv0.
         { left; rewrite <- Q2R0_is_0; apply Qlt_Rlt; auto. }
         { right; rewrite <- Q2R0_is_0; apply Qlt_Rlt; auto. }
302
       * pose proof (interval_inversion_valid (iv :=(Q2R (fst intv_f),(Q2R (snd intv_f)))) (a :=v1)) as inv_valid.
303 304 305
         unfold contained, invertInterval in inv_valid; simpl in *.
         apply Qle_Rle in valid_lo; apply Qle_Rle in valid_hi.
         destruct IHf.
306
         rewrite delta_0_deterministic; auto.
307
         unfold perturb; split.
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
         { eapply Rle_trans. apply valid_lo.
           destruct nodiv0_prop as [nodiv0_neg | nodiv0_pos].
           (* TODO: Extract lemma maybe *)
           - assert (0 < - (Q2R (snd intv_f)))%R as negation_pos by lra.
             assert (- (Q2R (snd intv_f)) <= - v1)%R as negation_flipped_hi by lra.
             apply Rinv_le_contravar in negation_flipped_hi; try auto.
             rewrite <- Ropp_inv_permute in negation_flipped_hi; try lra.
             rewrite <- Ropp_inv_permute in negation_flipped_hi; try lra.
             apply Ropp_le_contravar in negation_flipped_hi.
             repeat rewrite Ropp_involutive in negation_flipped_hi;
               rewrite Q2R_inv; auto.
             hnf; intros is_0.
             rewrite <- Q2R0_is_0 in nodiv0_neg.
             apply Rlt_Qlt in nodiv0_neg; lra.
           - rewrite Q2R_inv.
             apply Rinv_le_contravar; try lra.
             hnf; intros is_0.
             assert (Q2R (fst intv_f) <= Q2R (snd intv_f))%R by lra.
             rewrite <- Q2R0_is_0 in nodiv0_pos.
327
             apply Rlt_Qlt in nodiv0_pos; apply Rle_Qle in H3; lra.
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
         }
         { eapply Rle_trans.
           Focus 2. apply valid_hi.
           destruct nodiv0_prop as [nodiv0_neg | nodiv0_pos].
           - assert (Q2R (fst intv_f) < 0)%R as fst_lt_0 by lra.
             assert (0 < - (Q2R (fst intv_f)))%R as negation_pos by lra.
             assert (- v1 <= - (Q2R (fst intv_f)))%R as negation_flipped_lo by lra.
             apply Rinv_le_contravar in negation_flipped_lo; try auto.
             rewrite <- Ropp_inv_permute in negation_flipped_lo; try lra.
             rewrite <- Ropp_inv_permute in negation_flipped_lo; try lra.
             apply Ropp_le_contravar in negation_flipped_lo.
             repeat rewrite Ropp_involutive in negation_flipped_lo;
               rewrite Q2R_inv; auto.
             hnf; intros is_0.
             rewrite <- Q2R0_is_0 in negation_pos.
             rewrite <- Q2R_opp in negation_pos.
             apply Rlt_Qlt in negation_pos; lra.
             assert (0 < - (Q2R (snd intv_f)))%R by lra.
             lra.
           - rewrite Q2R_inv.
             apply Rinv_le_contravar; try lra.
             hnf; intros is_0.
             assert (Q2R (fst intv_f) <= Q2R (snd intv_f))%R by lra.
             rewrite <- Q2R0_is_0 in nodiv0_pos.
352
             apply Rlt_Qlt in nodiv0_pos; apply Rle_Qle in H3; lra.
353
         }
354
         { rewrite Q2R0_is_0 in H1; auto. }
355
  - inversion eval_f; subst.
356 357
    rewrite delta_0_deterministic in eval_f; auto.
    rewrite delta_0_deterministic; auto.
Heiko Becker's avatar
Heiko Becker committed
358
    simpl in valid_bounds.
Heiko Becker's avatar
Heiko Becker committed
359 360 361
    case_eq (absenv (Binop b f1 f2)); intros iv err absenv_bin.
    case_eq (absenv f1); intros iv1 err1 absenv_f1.
    case_eq (absenv f2); intros iv2 err2 absenv_f2.
362
    simpl.
Heiko Becker's avatar
Heiko Becker committed
363
    rewrite absenv_bin, absenv_f1, absenv_f2 in valid_bounds.
Heiko Becker's avatar
Heiko Becker committed
364 365 366 367 368 369
    apply Is_true_eq_left in valid_bounds.
    apply andb_prop_elim in valid_bounds.
    destruct valid_bounds as [valid_rec valid_bin].
    apply andb_prop_elim in valid_rec.
    destruct valid_rec as [valid_e1 valid_e2].
    apply Is_true_eq_true in valid_e1; apply Is_true_eq_true in  valid_e2.
='s avatar
= committed
370
    destruct m1; destruct m2; cbv in H2; inversion H2.
371
    inversion typing_ok; subst.
372 373
    specialize (IHf1 v1 m1 H4 valid_e1 valid_definedVars). 
      specialize (IHf2 v2 m2 H8 valid_e2 valid_definedVars).
Heiko Becker's avatar
Heiko Becker committed
374 375
    rewrite absenv_f1 in IHf1.
    rewrite absenv_f2 in IHf2.
376 377 378
    assert ((Q2R (fst (fst (iv1, err1))) <= v1 <= Q2R (snd (fst (iv1, err1))))%R) as valid_bounds_e1.
    + apply IHf1; try auto.
      intros v in_diff_e1.
Raphaël Monat's avatar
Raphaël Monat committed
379
      apply usedVars_subset.
380 381
      simpl. rewrite NatSet.diff_spec,NatSet.union_spec.
      rewrite NatSet.diff_spec in in_diff_e1.
Raphaël Monat's avatar
Raphaël Monat committed
382
      destruct in_diff_e1 as [ in_usedVars not_dVar].
383
      split; try auto.
384 385 386
    + assert (Q2R (fst (fst (iv2, err2))) <= v2 <= Q2R (snd (fst (iv2, err2))))%R as valid_bounds_e2.
      * apply IHf2; try auto.
        intros v in_diff_e2.
Raphaël Monat's avatar
Raphaël Monat committed
387
        apply usedVars_subset.
388 389 390
        simpl. rewrite NatSet.diff_spec, NatSet.union_spec.
        rewrite NatSet.diff_spec in in_diff_e2.
        destruct in_diff_e2; split; auto.
391 392 393 394 395 396 397 398 399 400 401 402
      * destruct b; simpl in *.
        { pose proof (interval_addition_valid (iv1 :=(Q2R (fst iv1),Q2R (snd iv1))) (iv2 :=(Q2R (fst iv2), Q2R (snd iv2)))) as valid_add.
          unfold validIntervalAdd in valid_add.
          specialize (valid_add v1 v2 valid_bounds_e1 valid_bounds_e2).
          unfold contained in valid_add.
          unfold isSupersetIntv in valid_bin.
          apply andb_prop_elim in valid_bin; destruct valid_bin as [valid_lo valid_hi].
          apply Is_true_eq_true in valid_lo; apply Is_true_eq_true in valid_hi.
          apply Qle_bool_iff in valid_lo; apply Qle_bool_iff in valid_hi.
          apply Qle_Rle in valid_lo; apply Qle_Rle in valid_hi.
          destruct valid_add as [valid_add_lo valid_add_hi].
          split.
='s avatar
= committed
403
          - eapply Rle_trans. apply valid_lo.
404 405 406 407 408 409 410
            unfold ivlo. unfold addIntv.
            simpl in valid_add_lo.
            repeat rewrite <- Q2R_plus in valid_add_lo.
            rewrite <- Q2R_min4 in valid_add_lo.
            unfold absIvUpd; auto.
          - eapply Rle_trans.
            Focus 2.
='s avatar
= committed
411
            apply valid_hi.
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
            unfold ivlo, addIntv.
            simpl in valid_add_hi.
            repeat rewrite <- Q2R_plus in valid_add_hi.
            rewrite <- Q2R_max4 in valid_add_hi.
            unfold absIvUpd; auto. }
        { pose proof (interval_subtraction_valid (iv1 := (Q2R (fst iv1),Q2R (snd iv1))) (iv2 :=(Q2R (fst iv2), Q2R (snd iv2)))) as valid_sub.
          specialize (valid_sub v1 v2 valid_bounds_e1 valid_bounds_e2).
          unfold contained in valid_sub.
          unfold isSupersetIntv in valid_bin.
          apply andb_prop_elim in valid_bin; destruct valid_bin as [valid_lo valid_hi].
          apply Is_true_eq_true in valid_lo; apply Is_true_eq_true in valid_hi.
          apply Qle_bool_iff in valid_lo; apply Qle_bool_iff in valid_hi.
          apply Qle_Rle in valid_lo; apply Qle_Rle in valid_hi.
          destruct valid_sub as [valid_sub_lo valid_sub_hi].
          split.
='s avatar
= committed
427 428
          - eapply Rle_trans.
            apply valid_lo.
429 430 431 432 433 434 435 436
            unfold ivlo. unfold subtractIntv.
            simpl in valid_sub_lo.
            repeat rewrite <- Rsub_eq_Ropp_Rplus in valid_sub_lo.
            repeat rewrite <- Q2R_minus in valid_sub_lo.
            rewrite <- Q2R_min4 in valid_sub_lo.
            unfold absIvUpd; auto.
          - eapply Rle_trans.
            Focus 2.
='s avatar
= committed
437
            apply valid_hi.
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
            unfold ivlo, addIntv.
            simpl in valid_sub_hi.
            repeat rewrite <- Rsub_eq_Ropp_Rplus in valid_sub_hi.
            repeat rewrite <- Q2R_minus in valid_sub_hi.
            rewrite <- Q2R_max4 in valid_sub_hi.
            unfold absIvUpd; auto. }
        { pose proof (interval_multiplication_valid (iv1 :=(Q2R (fst iv1),Q2R (snd iv1))) (iv2:=(Q2R (fst iv2), Q2R (snd iv2)))) as valid_mul.
          specialize (valid_mul v1 v2 valid_bounds_e1 valid_bounds_e2).
          unfold contained in valid_mul.
          unfold isSupersetIntv in valid_bin.
          apply andb_prop_elim in valid_bin; destruct valid_bin as [valid_lo valid_hi].
          apply Is_true_eq_true in valid_lo; apply Is_true_eq_true in valid_hi.
          apply Qle_bool_iff in valid_lo; apply Qle_bool_iff in valid_hi.
          apply Qle_Rle in valid_lo; apply Qle_Rle in valid_hi.
          destruct valid_mul as [valid_mul_lo valid_mul_hi].
          split.
='s avatar
= committed
454 455
          - eapply Rle_trans.
            apply valid_lo.
456 457 458 459 460 461 462
            unfold ivlo. unfold multIntv.
            simpl in valid_mul_lo.
            repeat rewrite <- Q2R_mult in valid_mul_lo.
            rewrite <- Q2R_min4 in valid_mul_lo.
            unfold absIvUpd; auto.
          - eapply Rle_trans.
            Focus 2.
='s avatar
= committed
463
            apply valid_hi.
464 465 466 467 468 469
            unfold ivlo, addIntv.
            simpl in valid_mul_hi.
            repeat rewrite <- Q2R_mult in valid_mul_hi.
            rewrite <- Q2R_max4 in valid_mul_hi.
            unfold absIvUpd; auto. }
        { pose proof (interval_division_valid (a:=v1) (b:=v2) (iv1:=(Q2R (fst iv1), Q2R (snd iv1))) (iv2:=(Q2R (fst iv2),Q2R (snd iv2)))) as valid_div.
470
          rewrite <- andb_lazy_alt in valid_bin.
471 472
          unfold contained in valid_div.
          unfold isSupersetIntv in valid_bin.
473 474
          apply andb_prop_elim in valid_bin; destruct valid_bin as [nodiv0 valid_bin].
          (** CONTINUE **)
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
          apply andb_prop_elim in valid_bin; destruct valid_bin as [valid_lo valid_hi].
          apply Is_true_eq_true in valid_lo; apply Is_true_eq_true in valid_hi.
          apply Qle_bool_iff in valid_lo; apply Qle_bool_iff in valid_hi.
          apply Qle_Rle in valid_lo; apply Qle_Rle in valid_hi.
          apply orb_prop_elim in nodiv0.
          assert (snd iv2 < 0 \/ 0 < fst iv2).
          - destruct nodiv0 as [lt_0 | lt_0];
              apply andb_prop_elim in lt_0; destruct lt_0 as [le_0 neq_0];
                apply Is_true_eq_true in le_0; apply Is_true_eq_true in neq_0;
                  apply negb_true_iff in neq_0; apply Qeq_bool_neq in neq_0;
                    rewrite Qle_bool_iff in le_0;
                    rewrite Qle_lteq in le_0; destruct le_0 as [lt_0 | eq_0];
                      [ | exfalso; apply neq_0; auto | | exfalso; apply neq_0; symmetry; auto]; auto.
          - destruct valid_div as [valid_div_lo valid_div_hi]; simpl; try auto.
            + rewrite <- Q2R0_is_0.
              destruct H; [left | right]; apply Qlt_Rlt; auto.
            + unfold divideInterval, IVlo, IVhi in valid_div_lo, valid_div_hi.
              simpl in *.
              assert (Q2R (fst iv2) <= (Q2R (snd iv2)))%R by lra.
              assert (~ snd iv2 == 0).
              * destruct H; try lra.
                hnf; intros ivhi2_0.
                apply Rle_Qle in H0.
                rewrite ivhi2_0 in H0.
                lra.
              * assert (~ fst iv2 == 0).
                { destruct H; try lra.
                  hnf; intros ivlo2_0.
                  apply Rle_Qle in H0.
                  rewrite ivlo2_0 in H0.
                  lra. }
                { split.
='s avatar
= committed
507
                  - eapply Rle_trans. apply valid_lo.
508 509 510 511 512 513 514 515
                    unfold ivlo. unfold multIntv.
                    simpl in valid_div_lo.
                    rewrite <- Q2R_inv in valid_div_lo; [ | auto].
                    rewrite <- Q2R_inv in valid_div_lo; [ | auto].
                    repeat rewrite <- Q2R_mult in valid_div_lo.
                    rewrite <- Q2R_min4 in valid_div_lo; auto.
                  - eapply Rle_trans.
                    Focus 2.
='s avatar
= committed
516
                    apply valid_hi.
517 518 519 520 521
                    simpl in valid_div_hi.
                    rewrite <- Q2R_inv in valid_div_hi; [ | auto].
                    rewrite <- Q2R_inv in valid_div_hi; [ | auto].
                    repeat rewrite <- Q2R_mult in valid_div_hi.
                    rewrite <- Q2R_max4 in valid_div_hi; auto. } }
522
    + destruct m1; destruct m2; inversion H2.
523
      simpl in H3; rewrite Q2R0_is_0 in H3; auto.
524
    + destruct m1; destruct m2; inversion H2.
525
      simpl in H3; rewrite Q2R0_is_0 in H3; auto.
526
  - unfold validIntervalbounds in valid_bounds.
527
    simpl in *; destruct (absenv (Downcast m f)); destruct (absenv f); simpl in *.
528 529 530 531
    apply Is_true_eq_left in valid_bounds.
    apply andb_prop_elim in valid_bounds.
    destruct valid_bounds as [vI1 vI2].
    apply andb_prop_elim in vI2.
532
    destruct vI2 as [vI2 vI2'].
533 534 535 536 537 538 539
    apply Is_true_eq_true in vI2.
    apply Is_true_eq_true in vI2'.
    assert (isEqIntv i i0) as Eq by (apply supIntvAntisym; auto).
    destruct Eq as [Eqlo Eqhi].
    simpl in *.
    apply Qeq_eqR in Eqlo; rewrite Eqlo.
    apply Qeq_eqR in Eqhi; rewrite Eqhi.
540 541 542
    inversion typing_ok; subst.
    eapply IHf; try eauto.
    apply Is_true_eq_true in vI1; auto.
543
Qed.
544

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
(* Unused, proof not up-to-date *)
(* Theorem validIntervalboundsCmd_sound (f:cmd Q) (absenv:analysisResult): *)
(*   forall E vR fVars dVars outVars elo ehi err P, *)
(*     ssaPrg f (NatSet.union fVars dVars) outVars -> *)
(*     bstep (toREvalCmd (toRCmd f)) E vR M0  -> *)
(*     (forall v m, NatSet.mem v dVars = true -> *)
(*           exists vR, *)
(*             E v = Some (vR, m) /\ *)
(*             (Q2R (fst (fst (absenv (Var Q m v)))) <= vR <= Q2R (snd (fst (absenv (Var Q m v)))))%R) -> *)
(*     (forall v m, NatSet.mem v fVars = true -> *)
(*           exists vR, *)
(*             E v = Some (vR, m) /\ *)
(*             (Q2R (fst (P v)) <= vR <= Q2R (snd (P v)))%R) -> *)
(*     NatSet.Subset (NatSet.diff (Commands.freeVars f) dVars) fVars -> *)
(*     validIntervalboundsCmd f  absenv P dVars = true -> *)
(*     absenv (getRetExp f) = ((elo, ehi), err) -> *)
(*     (Q2R elo <=  vR <= Q2R ehi)%R. *)
(* Proof. *)
(*   induction f; *)
(*     intros *  ssa_f eval_f dVars_sound fVars_valid usedVars_subset valid_bounds_f absenv_f. *)
(*   - inversion ssa_f; subst. *)
(*     inversion eval_f; subst. *)
(*     unfold validIntervalboundsCmd in valid_bounds_f. *)
(*     andb_to_prop valid_bounds_f. *)
(*     inversion ssa_f; subst. *)
(*     specialize (IHf (updEnv n m v E) vR fVars (NatSet.add n dVars)). *)
(*     eapply IHf; eauto. *)
(*     + assert (NatSet.Equal (NatSet.add n (NatSet.union fVars dVars)) (NatSet.union fVars (NatSet.add n dVars))). *)
(*       * hnf. intros a; split; intros in_set. *)
(*         { rewrite NatSet.add_spec, NatSet.union_spec in in_set. *)
(*           rewrite NatSet.union_spec, NatSet.add_spec. *)
(*           destruct in_set as [P1 | [ P2 | P3]]; auto. } *)
(*         { rewrite NatSet.add_spec, NatSet.union_spec. *)
(*           rewrite NatSet.union_spec, NatSet.add_spec in in_set. *)
(*           destruct in_set as [P1 | [ P2 | P3]]; auto. } *)
(*       * eapply ssa_equal_set; eauto. *)
(*         symmetry; eauto. *)
(*     + admit. *)
(*     + *)
(*       intros v0 m0 mem_v0. *)
(*       unfold updEnv. *)
(*       case_eq (v0 =? n); intros v0_eq. *)
(*       * rename R1 into eq_lo; *)
(*           rename R0 into eq_hi. *)
(*         apply Qeq_bool_iff in eq_lo; *)
(*           apply Qeq_eqR in eq_lo. *)
(*         apply Qeq_bool_iff in eq_hi; *)
(*           apply Qeq_eqR in eq_hi. *)
(*         rewrite Nat.eqb_eq in v0_eq; subst. *)
(*         rewrite <- eq_lo, <- eq_hi. *)
(*         exists v; split; auto. *)
(*         eapply validIntervalbounds_sound; eauto. *)
(*         simpl in usedVars_subset. *)
(*         hnf. intros a in_usedVars. *)
(*         apply usedVars_subset. *)
(*         rewrite NatSet.diff_spec, NatSet.remove_spec, NatSet.union_spec. *)
(*         rewrite NatSet.diff_spec in in_usedVars. *)
(*         destruct in_usedVars as [ in_usedVars not_dVar]. *)
(*         repeat split; try auto. *)
(*         { hnf; intros; subst. *)
(*           specialize (H5 n in_usedVars). *)
(*           rewrite <- NatSet.mem_spec in H5. *)
(*           rewrite H5 in H6; congruence. } *)
(*       * apply dVars_sound. rewrite NatSet.mem_spec. *)
(*         rewrite NatSet.mem_spec in mem_v0. *)
(*         rewrite NatSet.add_spec in mem_v0. *)
(*         destruct mem_v0; try auto. *)
(*         rewrite Nat.eqb_neq in v0_eq. *)
(*         exfalso; apply v0_eq; auto. *)
(*     + intros v0 mem_fVars. *)
(*       unfold updEnv. *)
(*       case_eq (v0 =? n); intros case_v0; auto. *)
(*       rewrite Nat.eqb_eq in case_v0; subst. *)
(*       assert (NatSet.mem n (NatSet.union fVars dVars) = true) as in_union. *)
(*       * rewrite NatSet.mem_spec, NatSet.union_spec; rewrite <- NatSet.mem_spec; auto. *)
(*       * rewrite in_union in *; congruence. *)
(*     + clear L R1 R0 R IHf. *)
(*       hnf. intros a a_freeVar. *)
(*       rewrite NatSet.diff_spec in a_freeVar. *)
(*       destruct a_freeVar as [a_freeVar a_no_dVar]. *)
(*       apply usedVars_subset. *)
(*       simpl. *)
(*       rewrite NatSet.diff_spec, NatSet.remove_spec, NatSet.union_spec. *)
(*       repeat split; try auto. *)
(*       * hnf; intros; subst. *)
(*         apply a_no_dVar. *)
(*         rewrite NatSet.add_spec; auto. *)
(*       * hnf; intros a_dVar. *)
(*         apply a_no_dVar. *)
(*         rewrite NatSet.add_spec; auto. *)
(*   - unfold validIntervalboundsCmd in valid_bounds_f. *)
(*     inversion eval_f; subst. *)
(*     unfold updEnv. *)
(*     assert (Q2R (fst (fst (absenv (erasure e)))) <= vR <= Q2R (snd (fst (absenv (erasure e)))))%R. *)
(*     + simpl in valid_bounds_f; eapply validIntervalbounds_sound; eauto. *)
(*     + simpl in *. rewrite absenv_f in *; auto. *)
(* Qed. *)