Expressions.v 11.7 KB
Newer Older
1
(**
2
  Formalization of the base expression language for the daisy framework
3
 **)
4
Require Import Coq.Reals.Reals Coq.micromega.Psatz Coq.QArith.QArith Coq.QArith.Qreals.
5
Require Import Daisy.Infra.RealRationalProps Daisy.Infra.RationalSimps.
6
Require Export Daisy.Infra.Abbrevs Daisy.Infra.RealSimps Daisy.Infra.NatSet Daisy.IntervalArithQ Daisy.IntervalArith Daisy.Infra.MachineType.
7

8 9 10 11 12
(**
  Expressions will use binary operators.
  Define them first
**)
Inductive binop : Type := Plus | Sub | Mult | Div.
13

14
(** TODO: simplify pattern matching **)
15
Definition binopEqBool (b1:binop) (b2:binop) :=
='s avatar
= committed
16 17 18 19 20 21
  match b1, b2 with
  | Plus, Plus => true
  | Sub,  Sub  => true
  | Mult, Mult => true
  | Div,  Div  => true
  | _,_ => false
22 23
  end.

24 25 26 27
(**
  Next define an evaluation function for binary operators on reals.
  Errors are added on the expression evaluation level later.
 **)
28
Definition evalBinop (o:binop) (v1:R) (v2:R) :=
29 30 31 32 33 34
  match o with
  | Plus => Rplus v1 v2
  | Sub => Rminus v1 v2
  | Mult => Rmult v1 v2
  | Div => Rdiv v1 v2
  end.
35

36 37 38 39 40 41
Lemma binopEqBool_refl b:
  binopEqBool b b = true.
Proof.
  case b; auto.
Qed.

42 43 44 45 46 47
(**
   Expressions will use unary operators.
   Define them first
 **)
Inductive unop: Type := Neg | Inv.

48
Definition unopEqBool (o1:unop) (o2:unop) :=
='s avatar
= committed
49 50 51 52
  match o1, o2 with
  | Neg, Neg => true
  | Inv, Inv => true
  | _ , _ => false
53 54 55 56
  end.

(**
   Define evaluation for unary operators on reals.
57
   Errors are added in the expression evaluation level later.
58
 **)
59
Definition evalUnop (o:unop) (v:R):=
60 61 62 63 64
  match o with
  |Neg => (- v)%R
  |Inv => (/ v)%R
  end .

65 66


67
(**
68 69
  Define expressions parametric over some value type V.
  Will ease reasoning about different instantiations later.
70
**)
71
Inductive exp (V:Type): Type :=
72
  Var: mType -> nat -> exp V
73
| Const: mType -> V -> exp V
74
| Unop: unop -> exp V -> exp V
75 76
| Binop: binop -> exp V -> exp V -> exp V
| Downcast: mType -> exp V -> exp V.
77

78 79 80 81
(**
  Boolean equality function on expressions.
  Used in certificates to define the analysis result as function
**)
82
Fixpoint expEqBool (e1:exp Q) (e2:exp Q) :=
='s avatar
= committed
83 84 85 86 87 88 89
  match e1, e2 with
  | Var _ m1 v1, Var _ m2 v2 => andb (mTypeEqBool m1 m2) (v1 =? v2)
  | Const m1 n1, Const m2 n2 => andb (mTypeEqBool m1 m2) (Qeq_bool n1 n2)
  | Unop o1 e11, Unop o2 e22 => andb (unopEqBool o1 o2) (expEqBool e11 e22)
  | Binop o1 e11 e12, Binop o2 e21 e22 => andb (binopEqBool o1 o2) (andb (expEqBool e11 e21) (expEqBool e12 e22))
  | Downcast m1 f1, Downcast m2 f2 => andb (mTypeEqBool m1 m2) (expEqBool f1 f2)
  | _, _ => false
90 91
  end.

92

93
Lemma expEqBool_refl e:
94 95 96 97 98 99 100 101 102 103
  expEqBool e e = true.
Proof.
  induction e; apply andb_true_iff; split; simpl in *; auto; try (apply EquivEqBoolEq; auto). 
  - symmetry; apply beq_nat_refl.
  - apply Qeq_bool_iff; lra.
  - case u; auto.
  - case b; auto.
  - apply andb_true_iff; split.
    apply IHe1. apply IHe2.
Qed.
104

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
Lemma beq_nat_sym a b:
  beq_nat a b = beq_nat b a.
Proof.
  case_eq (a =? b); intros.
  - apply beq_nat_true in H.
    rewrite H.
    apply beq_nat_refl. 
  - apply beq_nat_false in H.
    case_eq (b =? a); intros.
    + apply beq_nat_true in H0.
      rewrite H0 in H.
      auto.
    + auto.
Qed.      

Lemma expEqBool_sym e e':
  expEqBool e e' = expEqBool e' e.
Proof.
  revert e'.
  induction e; intros e'; destruct e'; simpl; try auto.
  - f_equal.
    + apply mTypeEqBool_sym; auto.
    + apply beq_nat_sym.
  - f_equal.
    + apply mTypeEqBool_sym; auto.
    + apply Qeq_bool_sym.
  - f_equal.
    + destruct u; auto.
    + apply IHe.
  - f_equal.      
    + destruct b; auto.
    + f_equal.
      * apply IHe1.
      * apply IHe2.
  - f_equal.
    + apply mTypeEqBool_sym; auto.
    + apply IHe.
Qed.

='s avatar
= committed
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
Lemma expEqBool_trans e f g:
  expEqBool e f = true ->
  expEqBool f g = true ->
  expEqBool e g = true.
Proof.
  revert e f g; induction e; destruct f; intros; simpl in H; inversion H; rewrite H; clear H; destruct g; simpl in H0; inversion H0; rewrite H0; clear H0; apply andb_true_iff in H1; destruct H1; apply andb_true_iff in H2; destruct H2; simpl.
  - apply EquivEqBoolEq in H1.
    apply EquivEqBoolEq in H.
    apply beq_nat_true in H2.
    apply beq_nat_true in H0.
    subst.
    rewrite <- beq_nat_refl,mTypeEqBool_refl.
    auto.
  - apply EquivEqBoolEq in H1.
    apply EquivEqBoolEq in H.
    subst.
    rewrite mTypeEqBool_refl; simpl.
    apply Qeq_bool_iff in H2.
    apply Qeq_bool_iff in H0.
    apply Qeq_bool_iff.
    lra.
  - assert (u = u0) by (destruct u; destruct u0; inversion H1; auto).
    assert (u0 = u1) by (destruct u0; destruct u1; inversion H; auto).
    subst.
    assert (unopEqBool u1 u1 = true) by (destruct u1; auto).
    apply andb_true_iff; split; try auto.
    eapply IHe; eauto.
  - apply andb_true_iff; split.
    + destruct b; destruct b0; destruct b1; auto.
    + apply andb_true_iff in H2; destruct H2.
      apply andb_true_iff in H0; destruct H0.
      apply andb_true_iff; split.
      eapply IHe1; eauto.
      eapply IHe2; eauto.
  - apply EquivEqBoolEq in H1.
    apply EquivEqBoolEq in H.
    subst.
    rewrite mTypeEqBool_refl; simpl.
    eapply IHe; eauto.
Qed.

='s avatar
= committed
185
   
='s avatar
= committed
186

187 188 189
Fixpoint toRExp (e:exp Q) :=
  match e with
  |Var _ m v => Var R m v
190
  |Const m n => Const m (Q2R n)
191 192 193
  |Unop o e1 => Unop o (toRExp e1)
  |Binop o e1 e2 => Binop o (toRExp e1) (toRExp e2)
  |Downcast m e1 => Downcast m (toRExp e1)
194
  end.
195

196 197 198
Fixpoint toREval (e:exp R) :=
  match e with
  | Var _ _ v => Var R M0 v
199
  | Const _ n => Const M0 n
200 201
  | Unop o e1 => Unop o (toREval e1)
  | Binop o e1 e2 => Binop o (toREval e1) (toREval e2)
202
  | Downcast _ e1 =>  (toREval e1)
203
  end.
204

205 206 207 208 209 210 211 212 213
Definition toREvalEnv (E:env) : env :=
  fun (n:nat) =>
    let s := (E n) in
    match s with
    | None => None
    | Some (r, _) => Some (r, M0)
    end.


214 215 216 217
(**
  Define a perturbation function to ease writing of basic definitions
**)
Definition perturb (r:R) (e:R) :=
218
  (r * (1 + e))%R.
Heiko Becker's avatar
Heiko Becker committed
219

220
(**
221
Define expression evaluation relation parametric by an "error" epsilon.
222 223 224
The result value expresses float computations according to the IEEE standard,
using a perturbation of the real valued computation by (1 + delta), where
|delta| <= machine epsilon.
225
**)
226
Inductive eval_exp (E:env) :(exp R) -> R -> mType -> Prop :=
227 228
| Var_load m x v:
    E x = Some (v, m) ->
229
    eval_exp E (Var R m x) v m
230 231
| Const_dist m n delta:
    Rle (Rabs delta) (Q2R (meps m)) ->
232
    eval_exp E (Const m n) (perturb n delta) m
233 234 235 236 237 238 239
| Unop_neg m f1 v1:
    eval_exp E f1 v1 m ->
    eval_exp E (Unop Neg f1) (evalUnop Neg v1) m
| Unop_inv m f1 v1 delta:
    Rle (Rabs delta) (Q2R (meps m)) ->
    eval_exp E f1 v1 m ->
    eval_exp E (Unop Inv f1) (perturb (evalUnop Inv v1) delta) m
240 241
| Binop_dist m1 m2 op f1 f2 v1 v2 delta:
    Rle (Rabs delta) (Q2R (meps (computeJoin m1 m2))) ->
242 243
    eval_exp E f1 v1 m1 ->
    eval_exp E f2 v2 m2 ->
244
    ((op = Div) -> (~ v2 = 0)%R) ->
245
    eval_exp E (Binop op f1 f2) (perturb (evalBinop op v1 v2) delta)  (computeJoin m1 m2)
246
| Downcast_dist m m1 f1 v1 delta:
247
    (* Downcast expression f1 (evaluating to machine type m1), to a machine type m, less precise than m1.*)
248 249 250 251
    isMorePrecise m1 m = true ->
    Rle (Rabs delta) (Q2R (meps m)) ->
    eval_exp E f1 v1 m1 ->
    eval_exp E (Downcast m f1) (perturb v1 delta) m.
252 253


254 255 256 257 258
(**
  Define the set of "used" variables of an expression to be the set of variables
  occuring in it
**)
Fixpoint usedVars (V:Type) (e:exp V) :NatSet.t :=
259
  match e with
260
  | Var _ _ x => NatSet.singleton x
261 262
  | Unop u e1 => usedVars e1
  | Binop b e1 e2 => NatSet.union (usedVars e1) (usedVars e2)
263
  | Downcast _ e1 => usedVars e1
264 265
  | _ => NatSet.empty
  end.
266

267
(**
268
  If |delta| <= 0 then perturb v delta is exactly v.
269
**)
270
Lemma delta_0_deterministic (v:R) (delta:R):
Heiko Becker's avatar
Heiko Becker committed
271 272 273 274 275
  (Rabs delta <= 0)%R ->
  perturb v delta = v.
Proof.
  intros abs_0; apply Rabs_0_impl_eq in abs_0; subst.
  unfold perturb.
276
  lra.
Heiko Becker's avatar
Heiko Becker committed
277 278
Qed.

279 280
    
Lemma general_meps_0_deterministic (f:exp R) (E:env):
281 282
  forall v1 v2 m1,
    m1 = M0 ->
283
    eval_exp E (toREval f) v1 m1 ->
284
    eval_exp E (toREval f) v2 M0 ->
285 286
    v1 = v2.
Proof.
287
  induction f; intros v1 v2 m1 m10_eq eval_v1 eval_v2.
288 289
  - inversion eval_v1; inversion eval_v2; subst; auto;
      try repeat (repeat rewrite delta_0_deterministic; simpl in *; rewrite Q2R0_is_0 in *; subst; auto); simpl.
290
    rewrite H7 in H3; inversion H3; subst; auto.
291 292 293 294
  - inversion eval_v1; inversion eval_v2; subst; auto;
      try repeat (repeat rewrite delta_0_deterministic; simpl in *; rewrite Q2R0_is_0 in *; subst; auto); simpl.
  - inversion eval_v1; inversion eval_v2; subst; auto;
      try repeat (repeat rewrite delta_0_deterministic; simpl in *; rewrite Q2R0_is_0 in *; subst; auto); simpl.
295
    + apply Ropp_eq_compat. apply (IHf v0 v3 M0); auto.     
296 297
    + inversion H4.
    + inversion H5.
298
    + rewrite (IHf v0 v3 M0); auto.
299 300
  - inversion eval_v1; inversion eval_v2; subst; auto;
      try repeat (repeat rewrite delta_0_deterministic; simpl in *; rewrite Q2R0_is_0 in *; subst; auto); simpl.
301 302
    destruct m0; destruct m2; inversion H5.
    destruct m3; destruct m4; inversion H11.
303
    simpl in *.
304 305
    rewrite (IHf1 v0 v4 M0); auto.
    rewrite (IHf2 v5 v3 M0); auto.
306 307 308
    rewrite Q2R0_is_0 in H2,H12.
    rewrite delta_0_deterministic; auto.
    rewrite delta_0_deterministic; auto.
309 310
  - simpl toREval in eval_v1.
    simpl toREval in eval_v2.
311
    apply (IHf v1 v2 m1); auto.
312 313
Qed.

314 315 316 317 318 319 320 321
(* Lemma rnd_0_deterministic f E m v: *)
(*   eval_exp E (toREval (Downcast m f)) v M0 <-> *)
(*   eval_exp E (toREval f) v M0. *)
(* Proof. *)
(*   split; intros. *)
(*   - simpl in H. auto. *)
(*   - simpl; auto. *)
(* Qed. *)
322 323

  
324
(**
325
Evaluation with 0 as machine epsilon is deterministic
326
**)
327
Lemma meps_0_deterministic (f:exp R) (E:env):
328
  forall v1 v2,
329 330
  eval_exp E (toREval f) v1 M0 ->
  eval_exp E (toREval f) v2 M0 ->
331 332
  v1 = v2.
Proof.
333
  intros v1 v2 ev1 ev2.
334 335
  assert (M0 = M0) by auto.
  apply (general_meps_0_deterministic f H ev1 ev2). 
336 337
Qed.

338

339 340 341 342
(**
Helping lemma. Needed in soundness proof.
For each evaluation of using an arbitrary epsilon, we can replace it by
evaluating the subexpressions and then binding the result values to different
343
variables in the Environment.
344
**)
345 346 347
Lemma binary_unfolding b f1 f2 m E vF:
  eval_exp E (Binop b f1 f2) vF m ->
  exists vF1 vF2 m1 m2,
348 349 350 351 352
    m = computeJoin m1 m2 /\
    eval_exp E f1 vF1 m1 /\
    eval_exp E f2 vF2 m2 /\
    eval_exp  (updEnv 2 m2 vF2 (updEnv 1 m1 vF1 emptyEnv))
              (Binop b (Var R m1 1) (Var R m2 2)) vF m.
353
Proof.
354 355
  intros eval_float.
  inversion eval_float; subst.
356 357 358 359 360 361
  exists v1 ; exists v2; exists m1; exists m2; repeat split; try auto.
  eapply Binop_dist; eauto.
  pose proof (isMorePrecise_refl m1).
  eapply Var_load; eauto.
  pose proof (isMorePrecise_refl m2).
  eapply Var_load; eauto.
362 363
Qed.

364 365 366 367 368 369
(* Analogous lemma for unary expressions. *)
Lemma unary_unfolding (e:exp R) (m:mType) (E:env) (v:R):
  (eval_exp E (Unop Inv e) v m ->
   exists v1 m1,
     eval_exp E e v1 m1 /\
     eval_exp (updEnv 1 m1 v1 E) (Unop Inv (Var R m1 1)) v m).
370
Proof.
371
  intros eval_un.
372
    inversion eval_un; subst.
373
    exists v1; exists m.
374
    repeat split; try auto.
375 376 377
    econstructor; try auto.
    pose proof (isMorePrecise_refl m).
    econstructor; eauto.
378
Qed.
379

380 381 382 383 384 385
(**
  Using the parametric expressions, define boolean expressions for conditionals
**)
Inductive bexp (V:Type) : Type :=
  leq: exp V -> exp V -> bexp V
| less: exp V -> exp V -> bexp V.
386

387
(**
388
  Define evaluation of boolean expressions
389
 **)
390 391 392 393 394 395 396 397 398 399 400 401 402 403
(* Inductive bval (E:env): (bexp R) -> Prop -> Prop := *)
(*   leq_eval (f1:exp R) (f2:exp R) (v1:R) (v2:R): *)
(*     eval_exp E f1 v1 -> *)
(*     eval_exp E f2 v2 -> *)
(*     bval E (leq f1 f2) (Rle v1 v2) *)
(* |less_eval (f1:exp R) (f2:exp R) (v1:R) (v2:R): *)
(*     eval_exp E f1 v1 -> *)
(*     eval_exp E f2 v2 -> *)
(*     bval E (less f1 f2) (Rlt v1 v2). *)
(* (** *)
(*  Simplify arithmetic later by making > >= only abbreviations *)
(* **) *)
(* Definition gr := fun (V:Type) (f1: exp V) (f2: exp V) => less f2 f1. *)
(* Definition greq := fun (V:Type) (f1:exp V) (f2: exp V) => leq f2 f1. *)