ErrorBounds.v 20 KB
Newer Older
1
(**
Heiko Becker's avatar
Heiko Becker committed
2
3
Proofs of general bounds on the error of arithmetic expressions.
This shortens soundness proofs later.
4
Bounds are explained in section 5, Deriving Computable Error Bounds
5
**)
6
Require Import Coq.Reals.Reals Coq.micromega.Psatz Coq.QArith.QArith Coq.QArith.Qreals.
Heiko Becker's avatar
Heiko Becker committed
7
8
Require Import Daisy.Infra.Abbrevs Daisy.Infra.RationalSimps Daisy.Infra.RealSimps Daisy.Infra.RealRationalProps.
Require Import Daisy.Environments Daisy.Infra.ExpressionAbbrevs.
Heiko Becker's avatar
Heiko Becker committed
9

='s avatar
= committed
10
(* TODO: absenv not used *)
11
Lemma const_abs_err_bounded (n:R) (nR:R) (nF:R) (E1 E2:env) (absenv:analysisResult) (m:mType) defVars:
12
  eval_exp E1 (toREvalVars defVars) (Const M0 n) nR M0 ->
13
  eval_exp E2 defVars (Const m n) nF m ->
14
  (Rabs (nR - nF) <= Rabs n * (Q2R (meps m)))%R.
15
Proof.
Heiko Becker's avatar
Heiko Becker committed
16
  intros eval_real eval_float.
17
  inversion eval_real; subst.
18
  rewrite delta_0_deterministic; auto.
19
20
  inversion eval_float; subst.
  unfold perturb; simpl.
21
  rewrite Rabs_err_simpl, Rabs_mult.
22
  apply Rmult_le_compat_l; [apply Rabs_pos | auto].
23
24
  simpl (meps M0) in *.
  apply (Rle_trans _ (Q2R 0) _); try auto.
25
  rewrite Q2R0_is_0; lra.
26
27
Qed.

28
29
30
31
32
(*
Lemma param_abs_err_bounded (P:precond) (n:nat) (nR:R) (nF:R) (E1 E2:env) (absenv:analysisResult):
  eval_exp 0%R E1 P (Param R n) nR ->
  eval_exp (Q2R machineEpsilon) E2 P (Param R n) nF ->
  (Rabs (nR - nF) <=  * (Q2R machineEpsilon))%R.
33
Proof.
Heiko Becker's avatar
Heiko Becker committed
34
  intros eval_real eval_float.
35
  inversion eval_real; subst.
36
  rewrite delta_0_deterministic; auto.
37
38
  inversion eval_float; subst.
  unfold perturb; simpl.
39
40
  exists v; split; try auto.
  rewrite H3 in H8; inversion H8.
41
42
43
44
  rewrite Rabs_err_simpl.
  repeat rewrite Rabs_mult.
  apply Rmult_le_compat_l; [ apply Rabs_pos | auto].
Qed.
45
*)
46

47
Lemma add_abs_err_bounded (e1:exp Q) (e1R:R) (e1F:R) (e2:exp Q) (e2R:R) (e2F:R)
48
      (vR:R) (vF:R) (E1 E2:env) (err1 err2 :Q) (m m1 m2:mType) defVars:
49
  eval_exp E1 (toREvalVars defVars) (toREval (toRExp e1)) e1R M0 ->
50
  eval_exp E2 defVars (toRExp e1) e1F m1->
51
  eval_exp E1 (toREvalVars defVars) (toREval (toRExp e2)) e2R M0 ->
52
  eval_exp E2 defVars (toRExp e2) e2F m2 ->
53
54
  eval_exp E1 (toREvalVars defVars) (toREval (Binop Plus (toRExp e1) (toRExp e2))) vR M0 ->
  eval_exp (updEnv 2 e2F (updEnv 1 e1F emptyEnv)) (fun n => if (n =? 2) then Some m2 else if (n =? 1) then Some m1 else defVars n) (Binop Plus (Var R 1) (Var R 2)) vF m->
Heiko Becker's avatar
Heiko Becker committed
55
56
  (Rabs (e1R - e1F) <= Q2R err1)%R ->
  (Rabs (e2R - e2F) <= Q2R err2)%R ->
57
  (Rabs (vR - vF) <= Q2R err1 + Q2R err2 + (Rabs (e1F + e2F) * (Q2R (meps m))))%R.
58
Proof.
Heiko Becker's avatar
Heiko Becker committed
59
  intros e1_real e1_float e2_real e2_float plus_real plus_float bound_e1 bound_e2.
60
61
  (* Prove that e1R and e2R are the correct values and that vR is e1R + e2R *)
  inversion plus_real; subst.
62
  destruct m0; destruct m3; inversion H2;
63
      simpl in H3; rewrite Q2R0_is_0 in H3; auto.
64
  rewrite delta_0_deterministic in plus_real; auto.
65
66
  rewrite (delta_0_deterministic (evalBinop Plus v1 v2) delta); auto.
  unfold evalBinop in *; simpl in *.
67
  clear delta H3.
68
69
70
71
  rewrite (meps_0_deterministic (toRExp e1) H5 e1_real);
    rewrite (meps_0_deterministic (toRExp e2) H6 e2_real).
  rewrite (meps_0_deterministic (toRExp e1) H5 e1_real) in plus_real.
  rewrite (meps_0_deterministic (toRExp e2) H6 e2_real) in plus_real.
72
  clear H5 H6 H7 v1 v2.
73
74
75
  (* Now unfold the float valued evaluation to get the deltas we need for the inequality *)
  inversion plus_float; subst.
  unfold perturb; simpl.
76
  inversion H4; subst; inversion H7; subst.
77
  unfold updEnv; simpl.
78
79
80
  unfold updEnv in H1,H6; simpl in *.
  symmetry in H1,H6.
  inversion H1; inversion H6; subst.
81
  (* We have now obtained all necessary values from the evaluations --> remove them for readability *)
82
  clear plus_float H4 H7 plus_real e1_real e1_float e2_real e2_float H8 H6 H1.
83
84
85
86
87
88
89
90
91
92
  repeat rewrite Rmult_plus_distr_l.
  rewrite Rmult_1_r.
  rewrite Rsub_eq_Ropp_Rplus.
  repeat rewrite Ropp_plus_distr.
  rewrite plus_bounds_simplify.
  pose proof (Rabs_triang (e1R + - e1F) ((e2R + - e2F) + - ((e1F + e2F) * delta))).
  rewrite Rplus_assoc.
  eapply Rle_trans.
  apply H.
  pose proof (Rabs_triang (e2R + - e2F) (- ((e1F + e2F) * delta))).
93
  pose proof (Rplus_le_compat_l (Rabs (e1R + - e1F)) _ _ H1).
94
  eapply Rle_trans.
95
  apply H4.
96
97
98
99
100
101
102
103
104
  rewrite <- Rplus_assoc.
  repeat rewrite <- Rsub_eq_Ropp_Rplus.
  rewrite Rabs_Ropp.
  eapply Rplus_le_compat.
  - eapply Rplus_le_compat; auto.
  - rewrite Rabs_mult.
    eapply Rle_trans.
    eapply Rmult_le_compat_l.
    apply Rabs_pos.
105
    apply H3.
106
107
108
109
110
111
    apply Req_le; auto.
Qed.

(**
  Copy-Paste proof with minor differences, was easier then manipulating the evaluations and then applying the lemma
**)
112
Lemma subtract_abs_err_bounded (e1:exp Q) (e1R:R) (e1F:R) (e2:exp Q) (e2R:R)
113
      (e2F:R) (vR:R) (vF:R) (E1 E2:env) err1 err2 (m m1 m2:mType) defVars:
114
  eval_exp E1 (toREvalVars defVars) (toREval (toRExp e1)) e1R M0 ->
115
  eval_exp E2 defVars (toRExp e1) e1F m1 ->
116
  eval_exp E1 (toREvalVars defVars) (toREval (toRExp e2)) e2R M0 ->
117
  eval_exp E2 defVars (toRExp e2) e2F m2 ->
118
119
  eval_exp E1 (toREvalVars defVars) (toREval (Binop Sub (toRExp e1) (toRExp e2))) vR M0 ->
  eval_exp (updEnv 2 e2F (updEnv 1 e1F emptyEnv))              (fun n => if (n =? 2) then Some m2 else if (n =? 1) then Some m1 else defVars n)  (Binop Sub (Var R 1) (Var R 2)) vF m ->
Heiko Becker's avatar
Heiko Becker committed
120
121
  (Rabs (e1R - e1F) <= Q2R err1)%R ->
  (Rabs (e2R - e2F) <= Q2R err2)%R ->
122
  (Rabs (vR - vF) <= Q2R err1 + Q2R err2 + ((Rabs (e1F - e2F)) * (Q2R (meps m))))%R.
123
Proof.
Heiko Becker's avatar
Heiko Becker committed
124
  intros e1_real e1_float e2_real e2_float sub_real sub_float bound_e1 bound_e2.
125
  (* Prove that e1R and e2R are the correct values and that vR is e1R + e2R *)
126
  inversion sub_real; subst;
127
  destruct m0; destruct m3; inversion H2;
128
      simpl in H3; rewrite Q2R0_is_0 in H3; auto.
129
130
  rewrite delta_0_deterministic in sub_real; auto.
  rewrite delta_0_deterministic; auto.
131
  unfold evalBinop in *; simpl in *.
132
  clear delta H3.
133
134
135
136
  rewrite (meps_0_deterministic (toRExp e1) H5 e1_real);
    rewrite (meps_0_deterministic (toRExp e2) H6 e2_real).
  rewrite (meps_0_deterministic (toRExp e1) H5 e1_real) in sub_real.
  rewrite (meps_0_deterministic (toRExp e2) H6 e2_real) in sub_real.
137
  clear H5 H6 H7 v1 v2.
138
139
140
  (* Now unfold the float valued evaluation to get the deltas we need for the inequality *)
  inversion sub_float; subst.
  unfold perturb; simpl.
141
  inversion H4; subst; inversion H7; subst.
142
  unfold updEnv; simpl.
143
144
145
146
  simpl in H0; simpl in H5; inversion H0; inversion H5; subst; clear H0 H5.
  symmetry in H6, H1.
  unfold updEnv in H6, H1; simpl in H6, H1.
  inversion H6; inversion H1; subst.
147
  (* We have now obtained all necessary values from the evaluations --> remove them for readability *)
148
  clear sub_float H4 H7 sub_real e1_real e1_float e2_real e2_float H8 H1 H6.
149
150
151
152
153
  repeat rewrite Rmult_plus_distr_l.
  rewrite Rmult_1_r.
  repeat rewrite Rsub_eq_Ropp_Rplus.
  repeat rewrite Ropp_plus_distr.
  rewrite plus_bounds_simplify.
154
  rewrite Ropp_involutive.
155
156
  rewrite Rplus_assoc.
  eapply Rle_trans.
157
  apply Rabs_triang.
158
  eapply Rle_trans.
159
160
  eapply Rplus_le_compat_l.
  apply Rabs_triang.
161
  rewrite <- Rplus_assoc.
162
  setoid_rewrite Rplus_comm at 4.
163
164
  repeat rewrite <- Rsub_eq_Ropp_Rplus.
  rewrite Rabs_Ropp.
165
166
167
168
  rewrite Rabs_minus_sym in bound_e2.
  apply Rplus_le_compat; [apply Rplus_le_compat; auto | ].
  rewrite Rabs_mult.
  eapply Rmult_le_compat_l; [apply Rabs_pos | auto].
169
170
Qed.

171
Lemma mult_abs_err_bounded (e1:exp Q) (e1R:R) (e1F:R) (e2:exp Q) (e2R:R) (e2F:R)
172
      (vR:R) (vF:R) (E1 E2:env) (m m1 m2:mType) defVars:
173
  eval_exp E1 (toREvalVars defVars) (toREval (toRExp e1)) e1R M0 ->
174
  eval_exp E2 defVars (toRExp e1) e1F m1 ->
175
  eval_exp E1 (toREvalVars defVars) (toREval (toRExp e2)) e2R M0 ->
176
  eval_exp E2 defVars (toRExp e2) e2F m2 ->
177
178
  eval_exp E1 (toREvalVars defVars) (toREval (Binop Mult (toRExp e1) (toRExp e2))) vR M0 ->
  eval_exp (updEnv 2 e2F (updEnv 1 e1F emptyEnv)) (fun n => if (n =? 2) then Some m2 else if (n =? 1) then Some m1 else defVars n) (Binop Mult (Var R 1) (Var R 2)) vF m->
179
  (Rabs (vR - vF) <= Rabs (e1R * e2R - e1F * e2F) + Rabs (e1F * e2F) * (Q2R (meps m)))%R.
180
Proof.
Heiko Becker's avatar
Heiko Becker committed
181
  intros e1_real e1_float e2_real e2_float mult_real mult_float.
182
  (* Prove that e1R and e2R are the correct values and that vR is e1R * e2R *)
183
  inversion mult_real; subst;
184
    destruct m0; destruct m3; inversion H2;
185
      simpl in H3; rewrite Q2R0_is_0 in H3; auto.
186
187
  rewrite delta_0_deterministic in mult_real; auto.
  rewrite delta_0_deterministic; auto.
188
  unfold evalBinop in *; simpl in *.
189
  clear delta H3.
190
191
192
193
  rewrite (meps_0_deterministic (toRExp e1) H5 e1_real);
    rewrite (meps_0_deterministic (toRExp e2) H6 e2_real).
  rewrite (meps_0_deterministic (toRExp e1) H5 e1_real) in mult_real.
  rewrite (meps_0_deterministic (toRExp e2) H6 e2_real) in mult_real.
194
  clear H5 H6 v1 v2 H7 H2.
195
196
197
  (* Now unfold the float valued evaluation to get the deltas we need for the inequality *)
  inversion mult_float; subst.
  unfold perturb; simpl.
198
  inversion H3; subst; inversion H6; subst.
199
    unfold updEnv in *; simpl in *.
200
201
    inversion H6; inversion H1; subst.
    simpl in H8; simpl in H9; intros; inversion H5; subst.
202
  (* We have now obtained all necessary values from the evaluations --> remove them for readability *)
203
  clear mult_float H7 mult_real e1_real e1_float e2_real e2_float H6 H1.
204
205
206
207
  repeat rewrite Rmult_plus_distr_l.
  rewrite Rmult_1_r.
  rewrite Rsub_eq_Ropp_Rplus.
  rewrite Ropp_plus_distr.
Heiko Becker's avatar
Heiko Becker committed
208
209
  rewrite <- Rplus_assoc.
  setoid_rewrite <- Rsub_eq_Ropp_Rplus at 2.
210
211
212
  eapply Rle_trans.
  eapply Rabs_triang.
  eapply Rplus_le_compat_l.
Heiko Becker's avatar
Heiko Becker committed
213
  rewrite Rabs_Ropp.
214
  repeat rewrite Rabs_mult.
Heiko Becker's avatar
Heiko Becker committed
215
  eapply Rmult_le_compat_l; auto.
216
217
  rewrite <- Rabs_mult.
  apply Rabs_pos.
218
219
Qed.

220
Lemma div_abs_err_bounded (e1:exp Q) (e1R:R) (e1F:R) (e2:exp Q) (e2R:R) (e2F:R)
221
      (vR:R) (vF:R) (E1 E2:env) (m m1 m2:mType) defVars:
222
  eval_exp E1 (toREvalVars defVars) (toREval (toRExp e1)) e1R M0 ->
223
  eval_exp E2 defVars (toRExp e1) e1F m1 ->
224
  eval_exp E1 (toREvalVars defVars) (toREval (toRExp e2)) e2R M0 ->
225
  eval_exp E2 defVars (toRExp e2) e2F m2 ->
226
227
  eval_exp E1 (toREvalVars defVars) (toREval (Binop Div (toRExp e1) (toRExp e2))) vR M0 ->
  eval_exp (updEnv 2 e2F (updEnv 1 e1F emptyEnv)) (fun n => if (n =? 2) then Some m2 else if (n =? 1) then Some m1 else defVars n) (Binop Div (Var R 1) (Var R 2)) vF m ->
228
  (Rabs (vR - vF) <= Rabs (e1R / e2R - e1F / e2F) + Rabs (e1F / e2F) * (Q2R (meps m)))%R.
229
Proof.
Heiko Becker's avatar
Heiko Becker committed
230
  intros e1_real e1_float e2_real e2_float div_real div_float.
231
  (* Prove that e1R and e2R are the correct values and that vR is e1R * e2R *)
232
  inversion div_real; subst;
233
  destruct m0; destruct m3; inversion H2;
234
    simpl in H3; rewrite Q2R0_is_0 in H3; auto.
235
236
  rewrite delta_0_deterministic in div_real; auto.
  rewrite delta_0_deterministic; auto.
237
  unfold evalBinop in *; simpl in *.
238
  clear delta H3 H2.
239
240
241
242
  rewrite (meps_0_deterministic (toRExp e1) H5 e1_real);
    rewrite (meps_0_deterministic (toRExp e2) H6 e2_real).
  rewrite (meps_0_deterministic (toRExp e1) H5 e1_real) in div_real.
  rewrite (meps_0_deterministic (toRExp e2) H6 e2_real) in div_real.
243
  (* clear H5 H6 v1 v2. *)
244
245
246
  (* Now unfold the float valued evaluation to get the deltas we need for the inequality *)
  inversion div_float; subst.
  unfold perturb; simpl.
247
  inversion H3; subst; inversion H9; subst.
248
    unfold updEnv in *; simpl in *.
249
    inversion H8; inversion H1; subst.
250
  (* We have now obtained all necessary values from the evaluations --> remove them for readability *)
251
  clear div_float H0 H1 div_real e1_real e1_float e2_real e2_float.
252
253
254
255
256
257
258
259
260
261
262
263
264
  repeat rewrite Rmult_plus_distr_l.
  rewrite Rmult_1_r.
  rewrite Rsub_eq_Ropp_Rplus.
  rewrite Ropp_plus_distr.
  rewrite <- Rplus_assoc.
  setoid_rewrite <- Rsub_eq_Ropp_Rplus at 2.
  eapply Rle_trans.
  eapply Rabs_triang.
  eapply Rplus_le_compat_l.
  rewrite Rabs_Ropp.
  repeat rewrite Rabs_mult.
  eapply Rmult_le_compat_l; auto.
  apply Rabs_pos.
265
266
Qed.

267
268
269
270
271
272
273
274
Lemma err_prop_inversion_pos_real nF nR err elo ehi
      (float_iv_pos : (0 < elo - err)%R)
      (real_iv_pos : (0 < elo)%R)
      (err_bounded : (Rabs (nR - nF) <= err)%R)
      (valid_bounds_e2 : (elo <= nR <= ehi)%R)
      (valid_bounds_e2_err : (elo - err <= nF <= ehi + err)%R)
      (err_pos : (0 <= err)%R):
  (Rabs (/nR - / nF) <= err * / ((elo - err) * (elo- err)))%R.
275
Proof.
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
  rewrite Rabs_case_inverted in err_bounded.
  assert (0 < nF)%R as nF_pos by lra.
  destruct err_bounded as [ [diff_pos err_bounded] | [diff_neg err_bounded]].
  - cut (0 < /nF - / nR)%R.
    + intros abs_neg.
      rewrite Rabs_left; try lra.
      rewrite Rsub_eq_Ropp_Rplus, Ropp_plus_distr, Ropp_involutive.
      rewrite Ropp_inv_permute; try lra.
      apply (Rle_trans _ (/ - nR + / (nR - err))).
      * apply Rplus_le_compat_l.
        apply Rinv_le_contravar; lra.
      * rewrite equal_naming_inv; try lra.
        assert (- nR + (nR - err) = - err)%R as simplify_up by lra.
        rewrite simplify_up.
        unfold Rdiv.
        repeat(rewrite <- Ropp_mult_distr_l); rewrite <- Ropp_inv_permute.
        {
          rewrite <- Ropp_mult_distr_r, Ropp_involutive.
          apply Rmult_le_compat_l; try lra.
          apply Rinv_le_contravar.
          - apply Rmult_0_lt_preserving; lra.
          - apply Rmult_le_compat; lra.
        }
        { assert (0 < nR * (nR - err))%R by (apply Rmult_0_lt_preserving; lra); lra. }
    + cut (/ nR < /nF)%R.
      * intros; lra.
      * apply Rinv_lt_contravar; try lra.
        apply Rmult_0_lt_preserving; lra.
  - cut (0 <= /nR - /nF)%R.
    + intros abs_pos.
      rewrite Rabs_right; try lra.
      rewrite Rsub_eq_Ropp_Rplus, Ropp_plus_distr, Ropp_involutive in err_bounded.
      rewrite Rsub_eq_Ropp_Rplus.
      apply (Rle_trans _ (/nR - / (nR + err))).
      * apply Rplus_le_compat_l.
        apply Ropp_le_contravar.
        apply Rinv_le_contravar; lra.
      * rewrite Rsub_eq_Ropp_Rplus, Ropp_inv_permute; try lra.
        rewrite equal_naming_inv; try lra.
        assert (nR + - (nR + err) = - err)%R as simpl_up by lra.
        rewrite simpl_up.
        unfold Rdiv.
        rewrite <- Ropp_mult_distr_l, <- Ropp_mult_distr_r, <- Ropp_inv_permute.
        { rewrite <- Ropp_mult_distr_r. rewrite Ropp_involutive.
          apply Rmult_le_compat_l; try auto.
          apply Rinv_le_contravar.
          - apply Rmult_0_lt_preserving; lra.
          - apply Rmult_le_compat; lra.
        }
        { assert (0 < nR * (nR + err))%R by (apply Rmult_0_lt_preserving; lra); lra. }
    + cut (/nF <= /nR)%R.
      * intros; lra.
      * apply Rinv_le_contravar; try lra.
Qed.

Lemma err_prop_inversion_pos nF nR err (elo ehi:Q)
      (float_iv_pos : (Q2R 0 < Q2R (elo - err))%R)
      (real_iv_pos : (Q2R 0 < Q2R elo)%R)
      (err_bounded : (Rabs (nR - nF) <= Q2R err)%R)
      (valid_bounds_e2 : (Q2R elo <= nR <= Q2R ehi)%R)
      (valid_bounds_e2_err : (Q2R elo - Q2R err <= nF <= Q2R ehi + Q2R err)%R)
      (err_pos : (0 <= Q2R err)%R):
  (Rabs (/nR - / nF) <= Q2R err * / ((Q2R elo- Q2R err) * (Q2R elo- Q2R err)))%R.
Proof.
  eapply err_prop_inversion_pos_real; try rewrite <- Q2R0_is_0; eauto.
  rewrite <- Q2R_minus; auto.
  rewrite Q2R0_is_0; auto.
Qed.

Lemma err_prop_inversion_neg_real nF nR err elo ehi
      (float_iv_neg : (ehi + err < 0)%R)
      (real_iv_neg : (ehi < 0)%R)
      (err_bounded : (Rabs (nR - nF) <= err)%R)
      (valid_bounds_e : (elo <= nR <= ehi)%R)
      (valid_bounds_e_err : (elo - err <= nF <= ehi + err)%R)
      (err_pos : (0 <= err)%R):
  (Rabs (/nR - / nF) <= err * / ((ehi + err) * (ehi + err)))%R.
Proof.
  rewrite Rabs_case_inverted in err_bounded.
  assert (nF < 0)%R as nF_neg by lra.
  destruct err_bounded as [ [diff_pos err_bounded] | [diff_neg err_bounded]].
  - cut (0 < /nF - / nR)%R.
    + intros abs_neg.
      rewrite Rabs_left; try lra.
      rewrite Rsub_eq_Ropp_Rplus, Ropp_plus_distr, Ropp_involutive.
      rewrite Ropp_inv_permute; try lra.
      apply (Rle_trans _ (/ - nR + / (nR - err))).
      * apply Rplus_le_compat_l.
        assert (0 < - nF)%R by lra.
        assert (0 < - (nR - err))%R by lra.
        assert (nR - err <= nF)%R as nR_lower by lra.
        apply Ropp_le_contravar in nR_lower.
        apply Rinv_le_contravar in nR_lower; try lra.
        repeat (rewrite <- Ropp_inv_permute in nR_lower; try lra).
      * rewrite equal_naming_inv; try lra.
        assert (- nR + (nR - err) = - err)%R as simplify_up by lra.
        rewrite simplify_up.
        unfold Rdiv.
        repeat(rewrite <- Ropp_mult_distr_l); rewrite <- Ropp_inv_permute.
        {
          rewrite <- Ropp_mult_distr_r, Ropp_involutive.
          apply Rmult_le_compat_l; try lra.
          apply Rinv_le_contravar.
          - apply Rmult_lt_0_inverting; lra.
          - eapply Rle_trans.
            eapply Rmult_le_compat_neg_l; try lra.
            instantiate (1 := (nR - err)%R); try lra.
            setoid_rewrite Rmult_comm.
            eapply Rmult_le_compat_neg_l; lra.
        }
        { assert (0 < nR * (nR - err))%R by (apply Rmult_lt_0_inverting; lra); lra. }
    + cut (/ nR < /nF)%R.
      * intros; lra.
      * apply Rinv_lt_contravar; try lra.
        apply Rmult_lt_0_inverting; lra.
  - cut (0 <= /nR - /nF)%R.
    + intros abs_pos.
      rewrite Rabs_right; try lra.
      rewrite Rsub_eq_Ropp_Rplus, Ropp_plus_distr, Ropp_involutive in err_bounded.
      rewrite Rsub_eq_Ropp_Rplus.
      apply (Rle_trans _ (/nR - / (nR + err))).
      * apply Rplus_le_compat_l.
        apply Ropp_le_contravar.
        assert (0 < - nF)%R by lra.
        assert (0 < - (nR + err))%R by lra.
        assert (nF <= nR + err)%R as nR_upper by lra.
        apply Ropp_le_contravar in nR_upper.
        apply Rinv_le_contravar in nR_upper; try lra.
        repeat (rewrite <- Ropp_inv_permute in nR_upper; try lra).
      * rewrite Rsub_eq_Ropp_Rplus, Ropp_inv_permute; try lra.
406
        rewrite equal_naming_inv; try lra.
407
408
        assert (nR + - (nR + err) = - err)%R as simpl_up by lra.
        rewrite simpl_up.
409
        unfold Rdiv.
410
        rewrite <- Ropp_mult_distr_l, <- Ropp_mult_distr_r, <- Ropp_inv_permute.
411
412
413
        { rewrite <- Ropp_mult_distr_r. rewrite Ropp_involutive.
          apply Rmult_le_compat_l; try auto.
          apply Rinv_le_contravar.
414
415
416
417
418
419
420
421
422
423
424
425
426
427
          - apply Rmult_lt_0_inverting; lra.
          - eapply Rle_trans.
            eapply Rmult_le_compat_neg_l; try lra.
            instantiate (1:= (nR + err)%R); try lra.
            setoid_rewrite Rmult_comm.
            eapply Rmult_le_compat_neg_l; lra.
        }
        { assert (0 < nR * (nR + err))%R by (apply Rmult_lt_0_inverting; lra); lra. }
    + cut (/nF <= /nR)%R.
      * intros; lra.
      * assert (nR <= nF)%R by lra.
        assert (- nF <= - nR)%R as le_inv by lra.
        apply Rinv_le_contravar in le_inv; try lra.
        repeat (rewrite <- Ropp_inv_permute in le_inv; try lra).
428
429
Qed.

430
431
432
433
434
435
436
437
Lemma err_prop_inversion_neg nF nR err (elo ehi:Q)
      (float_iv_neg : (Q2R (ehi + err) < Q2R 0)%R)
      (real_iv_neg : (Q2R ehi < Q2R 0)%R)
      (err_bounded : (Rabs (nR - nF) <= Q2R err)%R)
      (valid_bounds_e : (Q2R elo <= nR <= Q2R ehi)%R)
      (valid_bounds_e_err : (Q2R elo - Q2R err <= nF <= Q2R ehi + Q2R err)%R)
      (err_pos : (0 <= Q2R err)%R):
  (Rabs (/nR - / nF) <= Q2R err * / ((Q2R ehi + Q2R err) * (Q2R ehi + Q2R err)))%R.
438
Proof.
439
440
441
442
443
444
  eapply err_prop_inversion_neg_real; try rewrite <- Q2R0_is_0; try lra.
  rewrite <- Q2R_plus ; auto.
  apply valid_bounds_e.
  auto.
  rewrite Q2R0_is_0; auto.
Qed.
445

446
Lemma round_abs_err_bounded (e:exp R) (nR nF1 nF:R) (E1 E2: env) (err:R) (machineEpsilon m:mType) defVars:
447
  eval_exp E1 (toREvalVars defVars) (toREval e) nR M0 ->
448
  eval_exp E2 defVars e nF1 m ->
449
  eval_exp (updEnv 1 nF1 emptyEnv) (fun n => if n =? 1 then Some m else defVars n)  (toRExp (Downcast machineEpsilon (Var Q 1))) nF machineEpsilon->
450
451
452
453
454
455
456
457
458
459
460
461
  (Rabs (nR - nF1) <= err)%R ->
  (Rabs (nR - nF) <= err + (Rabs nF1) * Q2R (meps machineEpsilon))%R.
Proof.
  intros eval_real eval_float eval_float_rnd err_bounded.
  replace (nR - nF)%R with ((nR - nF1) + (nF1 - nF))%R by lra.
  eapply Rle_trans.
  apply (Rabs_triang (nR - nF1) (nF1 - nF)).
  apply (Rle_trans _ (err + Rabs (nF1 - nF))  _).
  - apply Rplus_le_compat_r; assumption.
  - apply Rplus_le_compat_l.
    inversion eval_float_rnd; subst.
    inversion H5; subst.
462
    inversion H0; subst.
463
    unfold perturb; simpl.
464
    unfold updEnv in H3; simpl in H3; inversion H3; subst.
465
466
467
468
469
    replace (v1 - v1 * (1 + delta))%R with (- (v1 * delta))%R by lra.
    replace (Rabs (-(v1*delta))) with (Rabs (v1*delta)) by (symmetry; apply Rabs_Ropp).
    rewrite Rabs_mult.
    apply Rmult_le_compat_l.
    + apply Rabs_pos.
='s avatar
= committed
470
    + auto.
471
Qed.