ErrorBounds.v 19.1 KB
Newer Older
1
(**
Heiko Becker's avatar
Heiko Becker committed
2
3
Proofs of general bounds on the error of arithmetic expressions.
This shortens soundness proofs later.
4
Bounds are explained in section 5, Deriving Computable Error Bounds
5
**)
6
Require Import Coq.Reals.Reals Coq.micromega.Psatz Coq.QArith.QArith Coq.QArith.Qreals.
Heiko Becker's avatar
Heiko Becker committed
7
8
Require Import Daisy.Infra.Abbrevs Daisy.Infra.RationalSimps Daisy.Infra.RealSimps Daisy.Infra.RealRationalProps.
Require Import Daisy.Environments Daisy.Infra.ExpressionAbbrevs.
Heiko Becker's avatar
Heiko Becker committed
9

10
Lemma const_abs_err_bounded (n:R) (nR:R) (nF:R) (E1 E2:env) (absenv:analysisResult) (m:mType):
11
  eval_exp E1 (Const M0 n) nR M0 ->
12
  eval_exp E2 (Const m n) nF m ->
13
  (Rabs (nR - nF) <= Rabs n * (Q2R (meps m)))%R.
14
Proof.
Heiko Becker's avatar
Heiko Becker committed
15
  intros eval_real eval_float.
16
  inversion eval_real; subst.
17
  rewrite delta_0_deterministic; auto.
18
19
  inversion eval_float; subst.
  unfold perturb; simpl.
20
  rewrite Rabs_err_simpl, Rabs_mult.
21
  apply Rmult_le_compat_l; [apply Rabs_pos | auto].
22
23
  simpl (meps M0) in *.
  apply (Rle_trans _ (Q2R 0) _); try auto.
24
  rewrite Q2R0_is_0; lra.
25
26
Qed.

27
28
29
30
31
(*
Lemma param_abs_err_bounded (P:precond) (n:nat) (nR:R) (nF:R) (E1 E2:env) (absenv:analysisResult):
  eval_exp 0%R E1 P (Param R n) nR ->
  eval_exp (Q2R machineEpsilon) E2 P (Param R n) nF ->
  (Rabs (nR - nF) <=  * (Q2R machineEpsilon))%R.
32
Proof.
Heiko Becker's avatar
Heiko Becker committed
33
  intros eval_real eval_float.
34
  inversion eval_real; subst.
35
  rewrite delta_0_deterministic; auto.
36
37
  inversion eval_float; subst.
  unfold perturb; simpl.
38
39
  exists v; split; try auto.
  rewrite H3 in H8; inversion H8.
40
41
42
43
  rewrite Rabs_err_simpl.
  repeat rewrite Rabs_mult.
  apply Rmult_le_compat_l; [ apply Rabs_pos | auto].
Qed.
44
*)
45

46
Lemma add_abs_err_bounded (e1:exp Q) (e1R:R) (e1F:R) (e2:exp Q) (e2R:R) (e2F:R)
47
      (vR:R) (vF:R) (E1 E2:env) (err1 err2 :Q) (m m1 m2:mType):
48
  eval_exp E1 (toREval (toRExp e1)) e1R M0 ->
49
  eval_exp E2 (toRExp e1) e1F m1->
50
  eval_exp E1 (toREval (toRExp e2)) e2R M0 ->
51
  eval_exp E2 (toRExp e2) e2F m2 ->
52
  eval_exp E1 (toREval (Binop Plus (toRExp e1) (toRExp e2))) vR M0 ->
53
  eval_exp (updEnv 2 m2 e2F (updEnv 1 m1 e1F emptyEnv)) (Binop Plus (Var R m1 1) (Var R m2 2)) vF m->
Heiko Becker's avatar
Heiko Becker committed
54
55
  (Rabs (e1R - e1F) <= Q2R err1)%R ->
  (Rabs (e2R - e2F) <= Q2R err2)%R ->
56
  (Rabs (vR - vF) <= Q2R err1 + Q2R err2 + (Rabs (e1F + e2F) * (Q2R (meps m))))%R.
57
Proof.
Heiko Becker's avatar
Heiko Becker committed
58
  intros e1_real e1_float e2_real e2_float plus_real plus_float bound_e1 bound_e2.
59
60
  (* Prove that e1R and e2R are the correct values and that vR is e1R + e2R *)
  inversion plus_real; subst.
61
  destruct m0; destruct m3; inversion H2;
62
      simpl in H3; rewrite Q2R0_is_0 in H3; auto.
63
  rewrite delta_0_deterministic in plus_real; auto.
64
65
  rewrite (delta_0_deterministic (evalBinop Plus v1 v2) delta); auto.
  unfold evalBinop in *; simpl in *.
66
  clear delta H3.
67
68
69
70
  rewrite (meps_0_deterministic (toRExp e1) H5 e1_real);
    rewrite (meps_0_deterministic (toRExp e2) H6 e2_real).
  rewrite (meps_0_deterministic (toRExp e1) H5 e1_real) in plus_real.
  rewrite (meps_0_deterministic (toRExp e2) H6 e2_real) in plus_real.
71
  clear H5 H6 H7 v1 v2.
72
73
74
  (* Now unfold the float valued evaluation to get the deltas we need for the inequality *)
  inversion plus_float; subst.
  unfold perturb; simpl.
75
  inversion H4; subst; inversion H7; subst.
76
  unfold updEnv; simpl.
77
78
79
  unfold updEnv in H6,H9; simpl in *.
  symmetry in H6,H9.
  inversion H6; inversion H9; subst.
80
  (* We have now obtained all necessary values from the evaluations --> remove them for readability *)
81
  clear plus_float H4 H7 plus_real e1_real e1_float e2_real e2_float H8 H6 H9.
82
83
84
85
86
87
88
89
90
91
92
93
  repeat rewrite Rmult_plus_distr_l.
  rewrite Rmult_1_r.
  rewrite Rsub_eq_Ropp_Rplus.
  repeat rewrite Ropp_plus_distr.
  rewrite plus_bounds_simplify.
  pose proof (Rabs_triang (e1R + - e1F) ((e2R + - e2F) + - ((e1F + e2F) * delta))).
  rewrite Rplus_assoc.
  eapply Rle_trans.
  apply H.
  pose proof (Rabs_triang (e2R + - e2F) (- ((e1F + e2F) * delta))).
  pose proof (Rplus_le_compat_l (Rabs (e1R + - e1F)) _ _ H0).
  eapply Rle_trans.
94
  apply H1.
95
96
97
98
99
100
101
102
103
  rewrite <- Rplus_assoc.
  repeat rewrite <- Rsub_eq_Ropp_Rplus.
  rewrite Rabs_Ropp.
  eapply Rplus_le_compat.
  - eapply Rplus_le_compat; auto.
  - rewrite Rabs_mult.
    eapply Rle_trans.
    eapply Rmult_le_compat_l.
    apply Rabs_pos.
104
    apply H3.
105
106
107
108
109
110
    apply Req_le; auto.
Qed.

(**
  Copy-Paste proof with minor differences, was easier then manipulating the evaluations and then applying the lemma
**)
111
Lemma subtract_abs_err_bounded (e1:exp Q) (e1R:R) (e1F:R) (e2:exp Q) (e2R:R)
112
      (e2F:R) (vR:R) (vF:R) (E1 E2:env) err1 err2 (m m1 m2:mType):
113
  eval_exp E1 (toREval (toRExp e1)) e1R M0 ->
114
  eval_exp E2 (toRExp e1) e1F m1 ->
115
  eval_exp E1 (toREval (toRExp e2)) e2R M0 ->
116
  eval_exp E2 (toRExp e2) e2F m2 ->
117
  eval_exp E1 (toREval (Binop Sub (toRExp e1) (toRExp e2))) vR M0 ->
118
  eval_exp (updEnv 2 m2 e2F (updEnv 1 m1 e1F emptyEnv)) (Binop Sub (Var R m1 1) (Var R m2 2)) vF m ->
Heiko Becker's avatar
Heiko Becker committed
119
120
  (Rabs (e1R - e1F) <= Q2R err1)%R ->
  (Rabs (e2R - e2F) <= Q2R err2)%R ->
121
  (Rabs (vR - vF) <= Q2R err1 + Q2R err2 + ((Rabs (e1F - e2F)) * (Q2R (meps m))))%R.
122
Proof.
Heiko Becker's avatar
Heiko Becker committed
123
  intros e1_real e1_float e2_real e2_float sub_real sub_float bound_e1 bound_e2.
124
  (* Prove that e1R and e2R are the correct values and that vR is e1R + e2R *)
125
  inversion sub_real; subst;
126
  destruct m0; destruct m3; inversion H2;
127
      simpl in H3; rewrite Q2R0_is_0 in H3; auto.
128
129
  rewrite delta_0_deterministic in sub_real; auto.
  rewrite delta_0_deterministic; auto.
130
  unfold evalBinop in *; simpl in *.
131
  clear delta H3.
132
133
134
135
  rewrite (meps_0_deterministic (toRExp e1) H5 e1_real);
    rewrite (meps_0_deterministic (toRExp e2) H6 e2_real).
  rewrite (meps_0_deterministic (toRExp e1) H5 e1_real) in sub_real.
  rewrite (meps_0_deterministic (toRExp e2) H6 e2_real) in sub_real.
136
  clear H5 H6 H7 v1 v2.
137
138
139
  (* Now unfold the float valued evaluation to get the deltas we need for the inequality *)
  inversion sub_float; subst.
  unfold perturb; simpl.
140
  inversion H4; subst; inversion H7; subst.
141
  unfold updEnv; simpl.
142
143
144
  symmetry in H6, H9.
  unfold updEnv in H6, H9; simpl in H6, H9.
  inversion H6; inversion H9; subst.
145
  (* We have now obtained all necessary values from the evaluations --> remove them for readability *)
146
  clear sub_float H4 H7 sub_real e1_real e1_float e2_real e2_float H6 H9 H8.
147
148
149
150
151
  repeat rewrite Rmult_plus_distr_l.
  rewrite Rmult_1_r.
  repeat rewrite Rsub_eq_Ropp_Rplus.
  repeat rewrite Ropp_plus_distr.
  rewrite plus_bounds_simplify.
152
  rewrite Ropp_involutive.
153
154
  rewrite Rplus_assoc.
  eapply Rle_trans.
155
  apply Rabs_triang.
156
  eapply Rle_trans.
157
158
  eapply Rplus_le_compat_l.
  apply Rabs_triang.
159
  rewrite <- Rplus_assoc.
160
  setoid_rewrite Rplus_comm at 4.
161
162
  repeat rewrite <- Rsub_eq_Ropp_Rplus.
  rewrite Rabs_Ropp.
163
164
165
166
  rewrite Rabs_minus_sym in bound_e2.
  apply Rplus_le_compat; [apply Rplus_le_compat; auto | ].
  rewrite Rabs_mult.
  eapply Rmult_le_compat_l; [apply Rabs_pos | auto].
167
168
Qed.

169
Lemma mult_abs_err_bounded (e1:exp Q) (e1R:R) (e1F:R) (e2:exp Q) (e2R:R) (e2F:R)
170
      (vR:R) (vF:R) (E1 E2:env) (m m1 m2:mType):
171
  eval_exp E1 (toREval (toRExp e1)) e1R M0 ->
172
  eval_exp E2 (toRExp e1) e1F m1 ->
173
  eval_exp E1 (toREval (toRExp e2)) e2R M0 ->
174
  eval_exp E2 (toRExp e2) e2F m2 ->
175
  eval_exp E1 (toREval (Binop Mult (toRExp e1) (toRExp e2))) vR M0 ->
176
  eval_exp (updEnv 2 m2 e2F (updEnv 1 m1 e1F emptyEnv)) (Binop Mult (Var R m1 1) (Var R m2 2)) vF m->
177
  (Rabs (vR - vF) <= Rabs (e1R * e2R - e1F * e2F) + Rabs (e1F * e2F) * (Q2R (meps m)))%R.
178
Proof.
Heiko Becker's avatar
Heiko Becker committed
179
  intros e1_real e1_float e2_real e2_float mult_real mult_float.
180
  (* Prove that e1R and e2R are the correct values and that vR is e1R * e2R *)
181
  inversion mult_real; subst;
182
    destruct m0; destruct m3; inversion H2;
183
      simpl in H3; rewrite Q2R0_is_0 in H3; auto.
184
185
  rewrite delta_0_deterministic in mult_real; auto.
  rewrite delta_0_deterministic; auto.
186
  unfold evalBinop in *; simpl in *.
187
  clear delta H3.
188
189
190
191
  rewrite (meps_0_deterministic (toRExp e1) H5 e1_real);
    rewrite (meps_0_deterministic (toRExp e2) H6 e2_real).
  rewrite (meps_0_deterministic (toRExp e1) H5 e1_real) in mult_real.
  rewrite (meps_0_deterministic (toRExp e2) H6 e2_real) in mult_real.
192
  clear H5 H6 v1 v2 H7 H2.
193
194
195
  (* Now unfold the float valued evaluation to get the deltas we need for the inequality *)
  inversion mult_float; subst.
  unfold perturb; simpl.
196
  inversion H3; subst; inversion H6; subst.
197
    unfold updEnv in *; simpl in *.
198
  inversion H5; inversion H8; subst.
199
  (* We have now obtained all necessary values from the evaluations --> remove them for readability *)
200
  clear mult_float H7 H8 mult_real e1_real e1_float e2_real e2_float H5 H8.
201
202
203
204
  repeat rewrite Rmult_plus_distr_l.
  rewrite Rmult_1_r.
  rewrite Rsub_eq_Ropp_Rplus.
  rewrite Ropp_plus_distr.
Heiko Becker's avatar
Heiko Becker committed
205
206
  rewrite <- Rplus_assoc.
  setoid_rewrite <- Rsub_eq_Ropp_Rplus at 2.
207
208
209
  eapply Rle_trans.
  eapply Rabs_triang.
  eapply Rplus_le_compat_l.
Heiko Becker's avatar
Heiko Becker committed
210
  rewrite Rabs_Ropp.
211
  repeat rewrite Rabs_mult.
Heiko Becker's avatar
Heiko Becker committed
212
  eapply Rmult_le_compat_l; auto.
213
214
  rewrite <- Rabs_mult.
  apply Rabs_pos.
215
216
Qed.

217
Lemma div_abs_err_bounded (e1:exp Q) (e1R:R) (e1F:R) (e2:exp Q) (e2R:R) (e2F:R)
218
      (vR:R) (vF:R) (E1 E2:env) (m m1 m2:mType):
219
  eval_exp E1 (toREval (toRExp e1)) e1R M0 ->
220
  eval_exp E2 (toRExp e1) e1F m1 ->
221
  eval_exp E1 (toREval (toRExp e2)) e2R M0 ->
222
  eval_exp E2 (toRExp e2) e2F m2 ->
223
  eval_exp E1 (toREval (Binop Div (toRExp e1) (toRExp e2))) vR M0 ->
224
  eval_exp (updEnv 2 m2 e2F (updEnv 1 m1 e1F emptyEnv)) (Binop Div (Var R m1 1) (Var R m2 2)) vF m ->
225
  (Rabs (vR - vF) <= Rabs (e1R / e2R - e1F / e2F) + Rabs (e1F / e2F) * (Q2R (meps m)))%R.
226
Proof.
Heiko Becker's avatar
Heiko Becker committed
227
  intros e1_real e1_float e2_real e2_float div_real div_float.
228
  (* Prove that e1R and e2R are the correct values and that vR is e1R * e2R *)
229
  inversion div_real; subst;
230
  destruct m0; destruct m3; inversion H2;
231
    simpl in H3; rewrite Q2R0_is_0 in H3; auto.
232
233
  rewrite delta_0_deterministic in div_real; auto.
  rewrite delta_0_deterministic; auto.
234
  unfold evalBinop in *; simpl in *.
235
  clear delta H3 H2.
236
237
238
239
  rewrite (meps_0_deterministic (toRExp e1) H5 e1_real);
    rewrite (meps_0_deterministic (toRExp e2) H6 e2_real).
  rewrite (meps_0_deterministic (toRExp e1) H5 e1_real) in div_real.
  rewrite (meps_0_deterministic (toRExp e2) H6 e2_real) in div_real.
240
  (* clear H5 H6 v1 v2. *)
241
242
243
  (* Now unfold the float valued evaluation to get the deltas we need for the inequality *)
  inversion div_float; subst.
  unfold perturb; simpl.
244
  inversion H3; subst; inversion H9; subst.
245
    unfold updEnv in *; simpl in *.
246
    inversion H8; inversion H11; subst.
247
  (* We have now obtained all necessary values from the evaluations --> remove them for readability *)
248
  clear div_float H8 H11 div_real e1_real e1_float e2_real e2_float.
249
250
251
252
253
254
255
256
257
258
259
260
261
  repeat rewrite Rmult_plus_distr_l.
  rewrite Rmult_1_r.
  rewrite Rsub_eq_Ropp_Rplus.
  rewrite Ropp_plus_distr.
  rewrite <- Rplus_assoc.
  setoid_rewrite <- Rsub_eq_Ropp_Rplus at 2.
  eapply Rle_trans.
  eapply Rabs_triang.
  eapply Rplus_le_compat_l.
  rewrite Rabs_Ropp.
  repeat rewrite Rabs_mult.
  eapply Rmult_le_compat_l; auto.
  apply Rabs_pos.
262
263
Qed.

264
265
266
267
268
269
270
271
Lemma err_prop_inversion_pos_real nF nR err elo ehi
      (float_iv_pos : (0 < elo - err)%R)
      (real_iv_pos : (0 < elo)%R)
      (err_bounded : (Rabs (nR - nF) <= err)%R)
      (valid_bounds_e2 : (elo <= nR <= ehi)%R)
      (valid_bounds_e2_err : (elo - err <= nF <= ehi + err)%R)
      (err_pos : (0 <= err)%R):
  (Rabs (/nR - / nF) <= err * / ((elo - err) * (elo- err)))%R.
272
Proof.
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
  rewrite Rabs_case_inverted in err_bounded.
  assert (0 < nF)%R as nF_pos by lra.
  destruct err_bounded as [ [diff_pos err_bounded] | [diff_neg err_bounded]].
  - cut (0 < /nF - / nR)%R.
    + intros abs_neg.
      rewrite Rabs_left; try lra.
      rewrite Rsub_eq_Ropp_Rplus, Ropp_plus_distr, Ropp_involutive.
      rewrite Ropp_inv_permute; try lra.
      apply (Rle_trans _ (/ - nR + / (nR - err))).
      * apply Rplus_le_compat_l.
        apply Rinv_le_contravar; lra.
      * rewrite equal_naming_inv; try lra.
        assert (- nR + (nR - err) = - err)%R as simplify_up by lra.
        rewrite simplify_up.
        unfold Rdiv.
        repeat(rewrite <- Ropp_mult_distr_l); rewrite <- Ropp_inv_permute.
        {
          rewrite <- Ropp_mult_distr_r, Ropp_involutive.
          apply Rmult_le_compat_l; try lra.
          apply Rinv_le_contravar.
          - apply Rmult_0_lt_preserving; lra.
          - apply Rmult_le_compat; lra.
        }
        { assert (0 < nR * (nR - err))%R by (apply Rmult_0_lt_preserving; lra); lra. }
    + cut (/ nR < /nF)%R.
      * intros; lra.
      * apply Rinv_lt_contravar; try lra.
        apply Rmult_0_lt_preserving; lra.
  - cut (0 <= /nR - /nF)%R.
    + intros abs_pos.
      rewrite Rabs_right; try lra.
      rewrite Rsub_eq_Ropp_Rplus, Ropp_plus_distr, Ropp_involutive in err_bounded.
      rewrite Rsub_eq_Ropp_Rplus.
      apply (Rle_trans _ (/nR - / (nR + err))).
      * apply Rplus_le_compat_l.
        apply Ropp_le_contravar.
        apply Rinv_le_contravar; lra.
      * rewrite Rsub_eq_Ropp_Rplus, Ropp_inv_permute; try lra.
        rewrite equal_naming_inv; try lra.
        assert (nR + - (nR + err) = - err)%R as simpl_up by lra.
        rewrite simpl_up.
        unfold Rdiv.
        rewrite <- Ropp_mult_distr_l, <- Ropp_mult_distr_r, <- Ropp_inv_permute.
        { rewrite <- Ropp_mult_distr_r. rewrite Ropp_involutive.
          apply Rmult_le_compat_l; try auto.
          apply Rinv_le_contravar.
          - apply Rmult_0_lt_preserving; lra.
          - apply Rmult_le_compat; lra.
        }
        { assert (0 < nR * (nR + err))%R by (apply Rmult_0_lt_preserving; lra); lra. }
    + cut (/nF <= /nR)%R.
      * intros; lra.
      * apply Rinv_le_contravar; try lra.
Qed.

Lemma err_prop_inversion_pos nF nR err (elo ehi:Q)
      (float_iv_pos : (Q2R 0 < Q2R (elo - err))%R)
      (real_iv_pos : (Q2R 0 < Q2R elo)%R)
      (err_bounded : (Rabs (nR - nF) <= Q2R err)%R)
      (valid_bounds_e2 : (Q2R elo <= nR <= Q2R ehi)%R)
      (valid_bounds_e2_err : (Q2R elo - Q2R err <= nF <= Q2R ehi + Q2R err)%R)
      (err_pos : (0 <= Q2R err)%R):
  (Rabs (/nR - / nF) <= Q2R err * / ((Q2R elo- Q2R err) * (Q2R elo- Q2R err)))%R.
Proof.
  eapply err_prop_inversion_pos_real; try rewrite <- Q2R0_is_0; eauto.
  rewrite <- Q2R_minus; auto.
  rewrite Q2R0_is_0; auto.
Qed.

Lemma err_prop_inversion_neg_real nF nR err elo ehi
      (float_iv_neg : (ehi + err < 0)%R)
      (real_iv_neg : (ehi < 0)%R)
      (err_bounded : (Rabs (nR - nF) <= err)%R)
      (valid_bounds_e : (elo <= nR <= ehi)%R)
      (valid_bounds_e_err : (elo - err <= nF <= ehi + err)%R)
      (err_pos : (0 <= err)%R):
  (Rabs (/nR - / nF) <= err * / ((ehi + err) * (ehi + err)))%R.
Proof.
  rewrite Rabs_case_inverted in err_bounded.
  assert (nF < 0)%R as nF_neg by lra.
  destruct err_bounded as [ [diff_pos err_bounded] | [diff_neg err_bounded]].
  - cut (0 < /nF - / nR)%R.
    + intros abs_neg.
      rewrite Rabs_left; try lra.
      rewrite Rsub_eq_Ropp_Rplus, Ropp_plus_distr, Ropp_involutive.
      rewrite Ropp_inv_permute; try lra.
      apply (Rle_trans _ (/ - nR + / (nR - err))).
      * apply Rplus_le_compat_l.
        assert (0 < - nF)%R by lra.
        assert (0 < - (nR - err))%R by lra.
        assert (nR - err <= nF)%R as nR_lower by lra.
        apply Ropp_le_contravar in nR_lower.
        apply Rinv_le_contravar in nR_lower; try lra.
        repeat (rewrite <- Ropp_inv_permute in nR_lower; try lra).
      * rewrite equal_naming_inv; try lra.
        assert (- nR + (nR - err) = - err)%R as simplify_up by lra.
        rewrite simplify_up.
        unfold Rdiv.
        repeat(rewrite <- Ropp_mult_distr_l); rewrite <- Ropp_inv_permute.
        {
          rewrite <- Ropp_mult_distr_r, Ropp_involutive.
          apply Rmult_le_compat_l; try lra.
          apply Rinv_le_contravar.
          - apply Rmult_lt_0_inverting; lra.
          - eapply Rle_trans.
            eapply Rmult_le_compat_neg_l; try lra.
            instantiate (1 := (nR - err)%R); try lra.
            setoid_rewrite Rmult_comm.
            eapply Rmult_le_compat_neg_l; lra.
        }
        { assert (0 < nR * (nR - err))%R by (apply Rmult_lt_0_inverting; lra); lra. }
    + cut (/ nR < /nF)%R.
      * intros; lra.
      * apply Rinv_lt_contravar; try lra.
        apply Rmult_lt_0_inverting; lra.
  - cut (0 <= /nR - /nF)%R.
    + intros abs_pos.
      rewrite Rabs_right; try lra.
      rewrite Rsub_eq_Ropp_Rplus, Ropp_plus_distr, Ropp_involutive in err_bounded.
      rewrite Rsub_eq_Ropp_Rplus.
      apply (Rle_trans _ (/nR - / (nR + err))).
      * apply Rplus_le_compat_l.
        apply Ropp_le_contravar.
        assert (0 < - nF)%R by lra.
        assert (0 < - (nR + err))%R by lra.
        assert (nF <= nR + err)%R as nR_upper by lra.
        apply Ropp_le_contravar in nR_upper.
        apply Rinv_le_contravar in nR_upper; try lra.
        repeat (rewrite <- Ropp_inv_permute in nR_upper; try lra).
      * rewrite Rsub_eq_Ropp_Rplus, Ropp_inv_permute; try lra.
403
        rewrite equal_naming_inv; try lra.
404
405
        assert (nR + - (nR + err) = - err)%R as simpl_up by lra.
        rewrite simpl_up.
406
        unfold Rdiv.
407
        rewrite <- Ropp_mult_distr_l, <- Ropp_mult_distr_r, <- Ropp_inv_permute.
408
409
410
        { rewrite <- Ropp_mult_distr_r. rewrite Ropp_involutive.
          apply Rmult_le_compat_l; try auto.
          apply Rinv_le_contravar.
411
412
413
414
415
416
417
418
419
420
421
422
423
424
          - apply Rmult_lt_0_inverting; lra.
          - eapply Rle_trans.
            eapply Rmult_le_compat_neg_l; try lra.
            instantiate (1:= (nR + err)%R); try lra.
            setoid_rewrite Rmult_comm.
            eapply Rmult_le_compat_neg_l; lra.
        }
        { assert (0 < nR * (nR + err))%R by (apply Rmult_lt_0_inverting; lra); lra. }
    + cut (/nF <= /nR)%R.
      * intros; lra.
      * assert (nR <= nF)%R by lra.
        assert (- nF <= - nR)%R as le_inv by lra.
        apply Rinv_le_contravar in le_inv; try lra.
        repeat (rewrite <- Ropp_inv_permute in le_inv; try lra).
425
426
Qed.

427
428
429
430
431
432
433
434
Lemma err_prop_inversion_neg nF nR err (elo ehi:Q)
      (float_iv_neg : (Q2R (ehi + err) < Q2R 0)%R)
      (real_iv_neg : (Q2R ehi < Q2R 0)%R)
      (err_bounded : (Rabs (nR - nF) <= Q2R err)%R)
      (valid_bounds_e : (Q2R elo <= nR <= Q2R ehi)%R)
      (valid_bounds_e_err : (Q2R elo - Q2R err <= nF <= Q2R ehi + Q2R err)%R)
      (err_pos : (0 <= Q2R err)%R):
  (Rabs (/nR - / nF) <= Q2R err * / ((Q2R ehi + Q2R err) * (Q2R ehi + Q2R err)))%R.
435
Proof.
436
437
438
439
440
441
  eapply err_prop_inversion_neg_real; try rewrite <- Q2R0_is_0; try lra.
  rewrite <- Q2R_plus ; auto.
  apply valid_bounds_e.
  auto.
  rewrite Q2R0_is_0; auto.
Qed.
442

443
444
445
446
Lemma round_abs_err_bounded (e:exp R) (nR nF1 nF:R) (E1 E2: env) (err:R) (machineEpsilon m:mType):
  eval_exp E1 (toREval e) nR M0 ->
  eval_exp E2 e nF1 m ->
  eval_exp (updEnv 1 m nF1 emptyEnv) (toRExp (Downcast machineEpsilon (Var Q m 1))) nF machineEpsilon->
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
  (Rabs (nR - nF1) <= err)%R ->
  (Rabs (nR - nF) <= err + (Rabs nF1) * Q2R (meps machineEpsilon))%R.
Proof.
  intros eval_real eval_float eval_float_rnd err_bounded.
  replace (nR - nF)%R with ((nR - nF1) + (nF1 - nF))%R by lra.
  eapply Rle_trans.
  apply (Rabs_triang (nR - nF1) (nF1 - nF)).
  apply (Rle_trans _ (err + Rabs (nF1 - nF))  _).
  - apply Rplus_le_compat_r; assumption.
  - apply Rplus_le_compat_l.
    inversion eval_float_rnd; subst.
    inversion H5; subst.
    inversion H7.
    unfold perturb; simpl.
    replace (v1 - v1 * (1 + delta))%R with (- (v1 * delta))%R by lra.
    replace (Rabs (-(v1*delta))) with (Rabs (v1*delta)) by (symmetry; apply Rabs_Ropp).
    rewrite Rabs_mult.
    apply Rmult_le_compat_l.
    + apply Rabs_pos.
    + auto. 
Qed.