IEEE_connection.v 49.8 KB
Newer Older
1
Require Import Coq.Reals.Reals Coq.QArith.QArith Coq.QArith.Qabs Coq.micromega.Psatz
2
        Coq.QArith.Qreals.
Heiko Becker's avatar
Heiko Becker committed
3
4
5
6
Require Import Daisy.Expressions Daisy.Infra.RationalSimps Daisy.Typing
        Daisy.IntervalValidation Daisy.ErrorValidation Daisy.CertificateChecker
        Daisy.FPRangeValidator Daisy.Environments Daisy.Infra.RealRationalProps
        Daisy.Commands Daisy.Infra.Ltacs.
7
8
Require Import Flocq.Appli.Fappli_IEEE_bits Flocq.Appli.Fappli_IEEE
        Flocq.Core.Fcore_Raux Flocq.Prop.Fprop_relative.
9

Heiko Becker's avatar
Heiko Becker committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
Definition dmode := mode_NE.
Definition fl64:Type := binary_float 53 1024.

Definition optionLift (A B:Type) (e:option A) (some_cont:A -> B) (none_cont:B) :=
  match e with
  | Some v => some_cont v
  | None => none_cont
  end.

Definition normal_or_zero v :=
   (v = 0 \/ (Q2R (minValue M64)) <= (Rabs v))%R.

Definition updFlEnv x v E :=
  fun y => if y =? x
        then Some (A:=(binary_float 53 1024)) v
        else E y.

Fixpoint eval_exp_float (e:exp (binary_float 53 1024)) (E:nat -> option fl64):=
28
29
30
31
32
33
34
35
36
37
38
39
40
  match e with
  | Var _ x => E x
  | Const m v => Some v
  | Unop Neg e =>
    match eval_exp_float e E with
    |Some v1 => Some (b64_opp v1)
    |_ => None
    end
  | Unop Inv e => None
  | Binop b e1 e2 =>
    match eval_exp_float e1 E, eval_exp_float e2 E with
    | Some f1, Some f2 =>
      match b with
Heiko Becker's avatar
Heiko Becker committed
41
42
43
44
      | Plus => Some (b64_plus dmode f1 f2)
      | Sub => Some (b64_minus dmode f1 f2)
      | Mult => Some (b64_mult dmode f1 f2)
      | Div => Some (b64_div dmode f1 f2)
45
46
47
48
      end
    |_ , _ => None
    end
  | _ => None
49
50
  end.

Heiko Becker's avatar
Heiko Becker committed
51
52
53
54
55
56
57
58
59
60
61
62
63
Fixpoint bstep_float f E :option fl64 :=
  match f with
  | Let m x e g => optionLift (eval_exp_float e E)
                             (fun v => bstep_float g (updFlEnv x v E))
                             None
  | Ret e => eval_exp_float e E
  end.

Definition isValid e :=
  let trans_e := optionLift e (fun v => Some (B2R 53 1024 v)) None in
  optionLift trans_e normal_or_zero False.

Fixpoint eval_exp_valid (e:exp fl64) E :=
64
  match e with
Heiko Becker's avatar
Heiko Becker committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
  | Var _ x => True (*isValid (eval_exp_float (Var n) E)*)
  | Const m v => True (*isValid (eval_exp_float (Const m v) E)*)
  | Unop u e => eval_exp_valid e E
  | Binop b e1 e2 =>
    (eval_exp_valid e1 E) /\ (eval_exp_valid e2 E) /\
    (let e1_res := eval_exp_float e1 E in
     let e2_res := eval_exp_float e2 E in
     optionLift e1_res
                (fun v1 =>
                   let v1_real := B2R 53 1024 v1 in
                   optionLift e2_res
                              (fun v2 =>
                                 let v2_real := B2R 53 1024 v2 in
                                 normal_or_zero (evalBinop b v1_real v2_real))
                              True)
                True)
  | Downcast m e => eval_exp_valid e E
82
83
  end.

Heiko Becker's avatar
Heiko Becker committed
84
85
Fixpoint bstep_valid f E :=
  match f with
86
87
88
89
90
  | Let m x e g =>
    eval_exp_valid e E /\
    (optionLift (eval_exp_float e E)
                (fun v_e => bstep_valid g (updFlEnv x v_e E))
                True)
Heiko Becker's avatar
Heiko Becker committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
  | Ret e => eval_exp_valid e E
  end.

Definition bpowQ (r:radix) (e: Z) :=
  match e with
  |0%Z => 1%Q
  | (' p)%Z => (Z.pow_pos r p) #1
  | Z.neg p => Qinv ((Z.pow_pos r p)#1)
  end.

Definition B2Q :=
  fun prec emax : Z =>
    let emin := (3 - emax - prec)%Z in
    let fexp := Fcore_FLT.FLT_exp emin prec in
    fun f : binary_float prec emax =>
      match f with
      | B754_zero _ _ _ => 0%Q
      | B754_infinity _ _ _ => (bpowQ radix2 emax) +1%Q
      | B754_nan _ _ _ _ => (bpowQ radix2 emax) +1%Q
      | B754_finite _ _ s m e _ =>
        let f_new: Fcore_defs.float radix2 := {| Fcore_defs.Fnum := cond_Zopp s (' m); Fcore_defs.Fexp := e |} in
        (Fcore_defs.Fnum f_new # 1) * bpowQ radix2 (Fcore_defs.Fexp f_new)
      end.

Lemma B2Q_B2R_eq :
  forall v,
    is_finite 53 1024 v = true ->
    Q2R (B2Q v) = B2R 53 1024 v.
Proof.
  intros; unfold B2Q, B2R, is_finite in *.
  destruct v eqn:?; try congruence;
    try rewrite Q2R0_is_0; try lra.
  unfold Fcore_defs.F2R.
  rewrite Q2R_mult.
  f_equal.
  - unfold Z2R, Q2R.
    simpl. rewrite RMicromega.Rinv_1.
    destruct (cond_Zopp b (' m)); unfold IZR;
      try rewrite P2R_INR; try lra.
  - unfold Q2R; simpl.
    unfold bpow, bpowQ.
    destruct e; simpl; try lra.
    + rewrite RMicromega.Rinv_1.
      unfold Z2R, IZR.
      destruct (Z.pow_pos 2 p); try rewrite P2R_INR; auto.
    + unfold Z2R, IZR. unfold Qinv; simpl.
      destruct (Z.pow_pos 2 p) eqn:? ; try rewrite P2R_INR; simpl; try lra.
      * unfold bounded in e0.  simpl in e0. unfold canonic_mantissa in e0.
        simpl in e0.
        pose proof (Is_true_eq_left _ e0).
        apply Is_true_eq_true in H0; andb_to_prop H0.
        assert (0 < Z.pow_pos 2 p)%Z.
        { apply Zpower_pos_gt_0. cbv; auto. }
        rewrite Heqz in H0. inversion H0.
      * rewrite <- Ropp_mult_distr_l, Ropp_mult_distr_r, Ropp_inv_permute; try lra.
        hnf; intros.  pose proof (pos_INR_nat_of_P p0).
        rewrite H0 in H1; lra.
Qed.

Fixpoint B2Qexp (e: exp fl64) :=
  match e with
  | Var _ x =>  Var Q x
  | Const m v => Const m (B2Q v)
  | Unop u e => Unop u (B2Qexp e)
  | Binop b e1 e2 => Binop b (B2Qexp e1) (B2Qexp e2)
  | Downcast m e => Downcast m (B2Qexp e)
  end.

Fixpoint B2Qcmd (f:cmd fl64) :=
  match f with
  | Let m x e g => Let m x (B2Qexp e) (B2Qcmd g)
  | Ret e => Ret (B2Qexp e)
  end.

Definition toREnv (E: nat -> option fl64) (x:nat):option R :=
  match E x with
  |Some v => Some (Q2R (B2Q v))
  |_ => None
  end.

Fixpoint is64BitEval (V:Type) (e:exp V) :=
  match e with
  | Var _ x => True
  | Const m e => m = M64
  | Unop u e => is64BitEval e
  | Binop b e1 e2 => is64BitEval e1 /\ is64BitEval e2
  | Downcast m e => m = M64 /\ is64BitEval e
  end.

Fixpoint is64BitBstep (V:Type) (f:cmd V) :=
  match f with
  | Let m x e g => is64BitEval e /\ m = M64 /\ is64BitBstep g
  | Ret e => is64BitEval e
  end.

Fixpoint noDowncast (V:Type) (e:exp V) :=
  match e with
  | Var _ x => True
  | Const m e => True
  | Unop u e => noDowncast e
  | Binop b e1 e2 => noDowncast e1 /\ noDowncast e2
  | Downcast m e => False
  end.

Fixpoint noDowncastFun (V:Type) (f:cmd V) :=
  match f with
  | Let m x e g => noDowncast e /\ noDowncastFun g
  | Ret e => noDowncast e
  end.

Opaque mTypeToQ.

Lemma validValue_is_finite v:
  validFloatValue (Q2R (B2Q v)) M64 -> is_finite 53 1024 v = true.
Proof.
  intros validVal.
  unfold is_finite.
  unfold validFloatValue, B2Q in *.
  destruct v; try auto;
    destruct validVal; unfold Normal in *; unfold Denormal in *;
      unfold maxValue, minValue, maxExponent, minExponentPos in*;
      rewrite Q2R_inv in *; unfold bpowQ in *.
  - assert (Z.pow_pos radix2 1024 = 179769313486231590772930519078902473361797697894230657273430081157732675805500963132708477322407536021120113879871393357658789768814416622492847430639474124377767893424865485276302219601246094119453082952085005768838150682342462881473913110540827237163350510684586298239947245938479716304835356329624224137216%Z)
      by (vm_compute;auto).
    rewrite H0 in H; destruct H; try lra.
    assert (Z.pow_pos 2 1023 = 89884656743115795386465259539451236680898848947115328636715040578866337902750481566354238661203768010560056939935696678829394884407208311246423715319737062188883946712432742638151109800623047059726541476042502884419075341171231440736956555270413618581675255342293149119973622969239858152417678164812112068608%Z)
      by (vm_compute; auto).
    rewrite H2 in *.
    clear H0 H2.
    rewrite Rabs_right in H1.
    apply Rle_Qle in H1.
    + rewrite <- Qle_bool_iff in H1.
      cbv in H1; try congruence.
    + rewrite <- Q2R0_is_0.
      apply Rle_ge. apply Qle_Rle; rewrite <- Qle_bool_iff; cbv; auto.
  - vm_compute; intros; congruence.
  - destruct H.
    + destruct H. rewrite Rabs_right in H.
      * rewrite <- Q2R_inv in H.
        apply Rlt_Qlt in H.
        vm_compute in H.
        congruence.
        vm_compute; congruence.
      * rewrite <- Q2R0_is_0.
        apply Rle_ge. apply Qle_Rle; rewrite <- Qle_bool_iff; cbv; auto.
    + rewrite <- Q2R0_is_0 in H.
      apply eqR_Qeq in H.
      vm_compute in H; congruence.
  - vm_compute; congruence.
  - destruct H.
    rewrite Rabs_right in H0.
    + apply Rle_Qle in H0.
      rewrite <- Qle_bool_iff in H0.
      vm_compute in H0; auto.
    + rewrite <- Q2R0_is_0.
      apply Rle_ge. apply Qle_Rle; rewrite <- Qle_bool_iff; cbv; auto.
  - vm_compute; congruence.
  - destruct H.
    + rewrite Rabs_right in H.
      * destruct H. rewrite <- Q2R_inv in H.
        { apply Rlt_Qlt in H. rewrite Qlt_alt in H.
          vm_compute in H. congruence. }
        { vm_compute; congruence. }
      * rewrite <- Q2R0_is_0.
        apply Rle_ge. apply Qle_Rle; rewrite <- Qle_bool_iff; cbv; auto.
    + rewrite <- Q2R0_is_0 in H.
      apply eqR_Qeq in H. vm_compute in H; congruence.
  - vm_compute; congruence.
Qed.

Lemma typing_exp_64_bit e:
  forall Gamma tMap,
    noDowncast e ->
    is64BitEval e ->
    typeCheck e Gamma tMap = true ->
    (forall v,
        NatSet.In v (usedVars e) -> Gamma v = Some M64) ->
Heiko Becker's avatar
Heiko Becker committed
268
    DaisyMap.find e tMap = Some M64.
Heiko Becker's avatar
Heiko Becker committed
269
270
Proof.
  induction e; intros * noDowncast_e is64BitEval_e typecheck_e types_valid;
Heiko Becker's avatar
Heiko Becker committed
271
272
273
274
275
276
    cbn in *; try inversion noDowncast_e;
      subst; Daisy_compute; try congruence;
        type_conv; subst.
  - rewrite types_valid in *; try set_tac.
  - destruct m; try congruence.
  - erewrite IHe in *; eauto.
Heiko Becker's avatar
Heiko Becker committed
277
278
279
280
281
  - repeat (match goal with
            |H: _ /\ _ |- _=> destruct H
            end).
      erewrite IHe1 in *; eauto.
    + erewrite IHe2 in *; eauto.
Heiko Becker's avatar
Heiko Becker committed
282
283
284
285
      * unfold join in *.
        destr_factorize.
        rewrite <- isMorePrecise_morePrecise.
        rewrite isMorePrecise_refl. inversion Heqo0; auto.
Heiko Becker's avatar
Heiko Becker committed
286
287
288
289
290
291
292
293
294
295
296
297
      * intros.
        apply types_valid. set_tac.
    + intros; apply types_valid; set_tac.
Qed.

Lemma typing_cmd_64_bit f:
  forall Gamma tMap,
    noDowncastFun f ->
    is64BitBstep f ->
    typeCheckCmd f Gamma tMap = true ->
    (forall v,
        NatSet.In v (freeVars f) -> Gamma v = Some M64) ->
Heiko Becker's avatar
Heiko Becker committed
298
    DaisyMap.find (getRetExp f) tMap = Some M64.
Heiko Becker's avatar
Heiko Becker committed
299
300
Proof.
  induction f; intros * noDowncast_f is64BitEval_f typecheck_f types_valid;
Heiko Becker's avatar
Heiko Becker committed
301
302
303
    cbn in *;
    subst; try eauto using typing_exp_64_bit;
      Daisy_compute; try congruence.
Heiko Becker's avatar
Heiko Becker committed
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
  destruct noDowncast_f; destruct is64BitEval_f as [Ha [Hb Hc]].
  eapply IHf; eauto.
  intros. unfold updDefVars.
  destruct (v =? n) eqn:?.
  - type_conv; auto.
  - apply types_valid.
    rewrite NatSet.remove_spec, NatSet.union_spec.
    split; try auto.
    hnf; intros; subst. rewrite Nat.eqb_neq in Heqb.
    congruence.
Qed.

Lemma typing_agrees_exp e:
  forall E Gamma tMap v m1 m2,
    typeCheck e Gamma tMap = true ->
    eval_exp E Gamma (toRExp e) v m1 ->
Heiko Becker's avatar
Heiko Becker committed
320
    DaisyMap.find e tMap = Some m2 ->
Heiko Becker's avatar
Heiko Becker committed
321
322
    m1 = m2.
Proof.
Heiko Becker's avatar
Heiko Becker committed
323
  induction e; intros * typeCheck_e eval_e tMap_e; cbn in *;
Heiko Becker's avatar
Heiko Becker committed
324
    rewrite tMap_e in *;
Heiko Becker's avatar
Heiko Becker committed
325
326
327
328
329
    inversion eval_e; subst; cbn in *;
      Daisy_compute; try congruence; type_conv; subst; try auto.
  - eapply IHe; eauto.
  - eapply IHe; eauto.
  - assert (m0 = m).
Heiko Becker's avatar
Heiko Becker committed
330
331
332
333
334
335
336
337
338
339
    { eapply IHe1; eauto. }
    assert (m3 = m1).
    { eapply IHe2; eauto. }
    subst; auto.
Qed.

Lemma typing_agrees_cmd f:
  forall E Gamma tMap v m1 m2,
    typeCheckCmd f Gamma tMap = true ->
    bstep (toRCmd f) E Gamma v m1 ->
Heiko Becker's avatar
Heiko Becker committed
340
    DaisyMap.find (getRetExp f) tMap = Some m2 ->
Heiko Becker's avatar
Heiko Becker committed
341
342
    m1 = m2.
Proof.
Heiko Becker's avatar
Heiko Becker committed
343
344
345
  induction f; intros * typeCheck_f eval_f tMap_f; cbn in *;
    Daisy_compute; try congruence; type_conv; subst.
  - inversion eval_f; subst; simpl in *.
Heiko Becker's avatar
Heiko Becker committed
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
    specialize (IHf (updEnv n v0 E) (updDefVars n m3 Gamma) tMap v m1 m2).
    apply IHf; auto.
  - inversion eval_f; subst; eapply typing_agrees_exp; eauto.
Qed.

Lemma round_0_zero:
  (Fcore_generic_fmt.round radix2 (Fcore_FLT.FLT_exp (3 - 1024 - 53) 53)
                           (round_mode mode_NE) 0) = 0%R.
Proof.
  unfold Fcore_generic_fmt.round. simpl.
  unfold Fcore_generic_fmt.scaled_mantissa.
  rewrite Rmult_0_l.
  unfold Fcore_generic_fmt.Znearest.
  unfold Zfloor.
  assert (up 0 = 1%Z).
  { symmetry. apply tech_up; lra. }
  rewrite H.
  simpl. rewrite Rsub_eq_Ropp_Rplus. rewrite Rplus_opp_r.
  assert (Rcompare (0) (/ 2) = Lt).
  { apply Rcompare_Lt. lra. }
  rewrite H0.
  unfold Fcore_generic_fmt.canonic_exp.
  unfold Fcore_defs.F2R; simpl.
  rewrite Rmult_0_l. auto.
Qed.

Lemma validValue_bounded b v_e1 v_e2:
  (Normal (evalBinop b (B2R 53 1024 v_e1) (B2R 53 1024 v_e2)) M64\/
   ((evalBinop b (B2R 53 1024 v_e1) (B2R 53 1024 v_e2)) = 0)%R) ->
  (forall eps, (Rabs eps <= / 2 * bpow radix2 (- 53 + 1))%R ->
  validFloatValue ((evalBinop b (B2R 53 1024 v_e1) (B2R 53 1024 v_e2)) * (1 + eps)) M64) ->
  Rlt_bool
    (Rabs
       (Fcore_generic_fmt.round
          radix2
          (Fcore_FLT.FLT_exp (3 - 1024 - 53) 53)
          (round_mode mode_NE)
          (evalBinop b (B2R 53 1024 v_e1) (B2R 53 1024 v_e2))))
    (bpow radix2 1024) = true.
Proof.
  simpl.
  pose proof (fexp_correct 53 1024 eq_refl) as fexp_corr.
  assert (forall k : Z, (-1022 < k)%Z ->
                     (53 <= k - Fcore_FLT.FLT_exp (3 - 1024 - 53) 53 k)%Z)
    as exp_valid.
  { intros k k_pos.
    unfold Fcore_FLT.FLT_exp; simpl.
    destruct (Z.max_spec_le (k - 53) (-1074)); omega. }
  pose proof (relative_error_N_ex radix2 (Fcore_FLT.FLT_exp (3 -1024 - 53) 53)
                                  (-1022)%Z 53%Z exp_valid)
    as rel_error_exists.
  intros [normal_v | zero_v] validVal;
  apply Rlt_bool_true.
  - unfold Normal in *; destruct normal_v.
    specialize (rel_error_exists (fun x => negb (Zeven x))
                                 (evalBinop b (B2R 53 1024 v_e1) (B2R 53 1024 v_e2))%R).
    destruct (rel_error_exists) as [eps [bounded_eps round_eq]].
    + eapply Rle_trans; eauto.
      unfold minValue, Z.pow_pos; simpl.
      rewrite Q2R_inv.
      * apply Rinv_le.
        { rewrite <- Q2R0_is_0. apply Qlt_Rlt.
          apply Qlt_alt. vm_compute; auto. }
        { unfold Q2R.
          unfold Qnum, Qden. lra. }
      *  vm_compute; congruence.
    + simpl in *.
      rewrite round_eq.
      destruct (validVal eps) as [normal_v | [denormal_v | zero_v]]; try auto.
      * unfold Normal in *. destruct normal_v.
        eapply Rle_lt_trans; eauto.
        unfold maxValue, bpow. unfold maxExponent. unfold Q2R.
        unfold Qnum, Qden. rewrite <- Z2R_IZR. unfold IZR. simpl; lra.
      * unfold Denormal in *. destruct denormal_v.
        eapply Rlt_trans; eauto.
        unfold minValue, minExponentPos, bpow.
        rewrite Q2R_inv.
        { unfold Q2R, Qnum, Qden.
          rewrite <- Z2R_IZR; unfold IZR; simpl; lra. }
        { vm_compute; congruence. }
      * rewrite zero_v. unfold bpow; simpl. rewrite Rabs_R0. lra.
  - rewrite zero_v.
    pose proof round_0_zero. simpl in H. rewrite H.
    rewrite Rabs_R0.
    unfold bpow. lra.
Qed.

(* (fexp_correct 53 1024 eq_refl) as fexp_corr. *)
(* (relative_error_N_ex radix2 (Fcore_FLT.FLT_exp (3 -1024 - 53) 53) *)
435
(*                                     (-1022)%Z 53%Z) *)
Heiko Becker's avatar
Heiko Becker committed
436
437
438
439
440
441
442
443
444
445
446
447
448
Lemma eval_exp_gives_IEEE (e:exp fl64) :
  forall E1 E2 E2_real Gamma tMap vR A P fVars dVars,
    (forall x, (toREnv E2) x = E2_real x) ->
    typeCheck (B2Qexp e) Gamma tMap = true ->
    approxEnv E1 Gamma A fVars dVars E2_real ->
    validIntervalbounds (B2Qexp e) A P dVars = true ->
    validErrorbound (B2Qexp e) tMap A dVars = true ->
    FPRangeValidator (B2Qexp e) A tMap dVars = true ->
    eval_exp (toREnv E2) Gamma (toRExp (B2Qexp e)) vR M64 ->
    NatSet.Subset ((usedVars (B2Qexp e)) -- dVars) fVars ->
    is64BitEval (B2Qexp e) ->
    noDowncast (B2Qexp e) ->
    eval_exp_valid e E2 ->
Heiko Becker's avatar
Heiko Becker committed
449
450
451
    dVars_range_valid dVars E1 A ->
    fVars_P_sound fVars E1 P ->
    vars_typed (NatSet.union fVars dVars) Gamma ->
Heiko Becker's avatar
Heiko Becker committed
452
453
454
      (forall v,
        NatSet.In v dVars ->
        exists vF m,
Heiko Becker's avatar
Heiko Becker committed
455
        (E2_real v = Some vF /\ DaisyMap.find (Var Q v) tMap = Some m /\
Heiko Becker's avatar
Heiko Becker committed
456
457
458
459
460
461
462
463
464
465
466
467
        validFloatValue vF m)) ->
      (forall v, NatSet.In v (usedVars (B2Qexp e)) -> Gamma v = Some M64) ->
      exists v,
        eval_exp_float e E2 = Some v /\
        eval_exp (toREnv E2) Gamma (toRExp (B2Qexp e)) (Q2R (B2Q v)) M64.
  induction e; simpl in *;
    intros * envs_eq typecheck_e approxEnv_E1_E2_real valid_rangebounds
                     valid_roundoffs valid_float_ranges eval_e_float
                     usedVars_sound is64BitEval_e noDowncast_e eval_IEEE_valid_e
                     fVars_defined vars_typed dVars_sound dVars_valid
                     usedVars_64bit;
    (match_pat (eval_exp _ _ _ _ _) (fun H => inversion H; subst; simpl in *));
Heiko Becker's avatar
Heiko Becker committed
468
469
     Daisy_compute_asm; try congruence; type_conv; subst;
     unfold Ltacs.optionLift.
Heiko Becker's avatar
Heiko Becker committed
470
471
472
473
474
475
476
477
478
  - unfold toREnv in *.
    destruct (E2 n) eqn:HE2; try congruence.
    exists f; split; try eauto.
    eapply Var_load; try auto. rewrite HE2; auto.
  - eexists; split; try eauto.
    eapply (Const_dist' (delta:=0%R)); eauto.
    + rewrite Rabs_R0; apply mTypeToQ_pos_R.
    + unfold perturb. lra.
  - edestruct IHe as [v_e [eval_float_e eval_rel_e]]; eauto.
Heiko Becker's avatar
Heiko Becker committed
479
480
481
482
483
484
485
486
487
488
    assert (is_finite 53 1024 v_e = true).
    { apply validValue_is_finite.
      eapply FPRangeValidator_sound; eauto.
      eapply eval_eq_env; eauto. }
    rewrite eval_float_e.
    exists (b64_opp v_e); split; try auto.
    unfold b64_opp. rewrite <- (is_finite_Bopp _ _ pair) in H.
    rewrite B2Q_B2R_eq; auto. rewrite B2R_Bopp.
    eapply Unop_neg'; eauto.
    unfold evalUnop. rewrite is_finite_Bopp in H. rewrite B2Q_B2R_eq; auto.
Heiko Becker's avatar
Heiko Becker committed
489
490
491
  - repeat (match goal with
            |H: _ /\ _ |- _ => destruct H
            end).
Heiko Becker's avatar
Heiko Becker committed
492
493
494
    assert (DaisyMap.find (B2Qexp e1) tMap = Some M64 /\
            DaisyMap.find (B2Qexp e2) tMap = Some M64 /\
            DaisyMap.find (Binop b (B2Qexp e1) (B2Qexp e2)) tMap = Some M64)
Heiko Becker's avatar
Heiko Becker committed
495
496
497
498
           as [tMap_e1 [tMap_e2 tMap_b]].
    { repeat split; apply (typing_exp_64_bit _ Gamma); simpl; auto.
      - intros; apply usedVars_64bit; set_tac.
      - intros; apply usedVars_64bit; set_tac.
Heiko Becker's avatar
Heiko Becker committed
499
      - rewrite Heqo, Heqo4, Heqo6.
Heiko Becker's avatar
Heiko Becker committed
500
501
502
503
        apply Is_true_eq_true; apply andb_prop_intro; split.
        + apply andb_prop_intro; split; apply Is_true_eq_left; auto.
          apply mTypeEq_refl.
        + apply Is_true_eq_left; auto. }
Heiko Becker's avatar
Heiko Becker committed
504
    repeat destr_factorize.
Heiko Becker's avatar
Heiko Becker committed
505
506
507
508
509
510
511
512
513
514
515
516
517
518
    assert (m1 = M64).
    { eapply (typing_agrees_exp (B2Qexp e1)); eauto. }
    assert (m2 = M64).
    { eapply typing_agrees_exp; eauto. }
    subst.
    destruct (IHe1 E1 E2 E2_real Gamma tMap v1 A P fVars dVars)
      as [v_e1 [eval_float_e1 eval_rel_e1]];
      try auto; try set_tac;
        [ intros; apply usedVars_64bit ; set_tac | ].
    destruct (IHe2 E1 E2 E2_real Gamma tMap v2 A P fVars dVars)
      as [v_e2 [eval_float_e2 eval_rel_e2]];
      try auto; try set_tac;
        [ intros; apply usedVars_64bit ; set_tac | ].
    rewrite eval_float_e1, eval_float_e2.
Heiko Becker's avatar
Heiko Becker committed
519
520
521
522
523
    edestruct (validIntervalbounds_sound (B2Qexp e2))
      as [iv_2 [err_2 [nR2 [map_e2 [eval_real_e2 e2_bounded_real]]]]];
      eauto; set_tac.
    destr_factorize.
    destruct iv_2 as [ivlo_2 ivhi_2].
Heiko Becker's avatar
Heiko Becker committed
524
525
    assert (forall vF2 m2,
               eval_exp E2_real Gamma (toRExp (B2Qexp e2)) vF2 m2 ->
Heiko Becker's avatar
Heiko Becker committed
526
527
               (Rabs (nR2 - vF2) <= Q2R err_2))%R.
    { eapply validErrorbound_sound; try eauto; try set_tac. }
Heiko Becker's avatar
Heiko Becker committed
528
529
    assert (contained (Q2R (B2Q v_e2))
                      (widenInterval
Heiko Becker's avatar
Heiko Becker committed
530
                         (Q2R ivlo_2, Q2R ivhi_2) (Q2R err_2))).
Heiko Becker's avatar
Heiko Becker committed
531
532
533
534
535
536
    { eapply distance_gives_iv.
      - simpl. eapply e2_bounded_real.
      - eapply H11. instantiate(1:=M64).
        eapply eval_eq_env; eauto. }
    assert (b = Div -> (Q2R (B2Q v_e2)) <> 0%R).
    { intros; subst; simpl in *.
Heiko Becker's avatar
Heiko Becker committed
537
538
539
      andb_to_prop R3.
      apply le_neq_bool_to_lt_prop in L3.
      destruct L3; hnf; intros.
Heiko Becker's avatar
Heiko Becker committed
540
541
542
543
544
545
546
547
548
549
550
551
552
553
      - rewrite H15 in *.
        apply Qlt_Rlt in H14.
        rewrite Q2R0_is_0, Q2R_plus in H14. lra.
      - rewrite H15 in *.
        apply Qlt_Rlt in H14.
        rewrite Q2R0_is_0, Q2R_minus in H14; lra. }
    assert (validFloatValue
              (evalBinop b (Q2R (B2Q v_e1)) (Q2R (B2Q v_e2))) M64).
    { eapply (FPRangeValidator_sound (Binop b (B2Qexp e1) (B2Qexp e2)));
        try eauto; set_tac.
      - eapply eval_eq_env; eauto.
        eapply (Binop_dist' (delta:=0)); eauto.
        + rewrite Rabs_R0. apply mTypeToQ_pos_R.
        + unfold perturb; lra.
Heiko Becker's avatar
Heiko Becker committed
554
      - Daisy_compute.
Heiko Becker's avatar
Heiko Becker committed
555
556
        apply Is_true_eq_true.
        repeat (apply andb_prop_intro); split; try auto using Is_true_eq_left.
Heiko Becker's avatar
Heiko Becker committed
557
      - Daisy_compute.
Heiko Becker's avatar
Heiko Becker committed
558
559
560
        apply Is_true_eq_true.
        repeat (apply andb_prop_intro); split; try auto using Is_true_eq_left.
        apply andb_prop_intro; split; auto using Is_true_eq_left.
Heiko Becker's avatar
Heiko Becker committed
561
      - inversion Heqo1; subst. rewrite Heqo0. rewrite Heqo.
Heiko Becker's avatar
Heiko Becker committed
562
563
        apply Is_true_eq_true.
        repeat (apply andb_prop_intro; split); try auto using Is_true_eq_left.
Heiko Becker's avatar
Heiko Becker committed
564
565
566
        rewrite Heqo3, Heqo5.
        apply Is_true_eq_left. inversion Heqo2; subst. auto.
      - rewrite Heqo, Heqo0.
Heiko Becker's avatar
Heiko Becker committed
567
        apply Is_true_eq_true.
Heiko Becker's avatar
Heiko Becker committed
568
        inversion Heqo1; inversion Heqo2; subst.
Heiko Becker's avatar
Heiko Becker committed
569
        repeat (apply andb_prop_intro; split); try auto using Is_true_eq_left. }
Heiko Becker's avatar
Heiko Becker committed
570
    (** MARKER **)
Heiko Becker's avatar
Heiko Becker committed
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
    assert (validFloatValue (Q2R (B2Q v_e1)) M64).
    { eapply (FPRangeValidator_sound (B2Qexp e1)); try eauto; try set_tac.
      eapply eval_eq_env; eauto. }
    assert (validFloatValue (Q2R (B2Q v_e2)) M64).
    { eapply (FPRangeValidator_sound (B2Qexp e2)); try eauto; try set_tac.
      - eapply eval_eq_env; eauto. }
    assert (is_finite 53 1024 v_e1 = true) as finite_e1.
    { apply validValue_is_finite; simpl; auto. }
    assert (is_finite 53 1024 v_e2 = true) as finite_e2.
    { apply validValue_is_finite; simpl; auto. }
    assert (forall eps,
               (Rabs eps <= / 2 * bpow radix2 (- 53 + 1))%R ->
               validFloatValue
                 (evalBinop b (B2R 53 1024 v_e1) (B2R 53 1024 v_e2) * (1 + eps)) M64).
    { intros.
      eapply FPRangeValidator_sound with (e:=Binop b (B2Qexp e1) (B2Qexp e2)); eauto.
      - eapply eval_eq_env; eauto.
        eapply Binop_dist' with (delta:=eps); eauto.
        simpl in H2. Transparent mTypeToQ. unfold mTypeToQ.
        eapply Rle_trans; eauto.  unfold Qpower. unfold Qpower_positive.
        assert (pow_pos Qmult (2#1) 53 = 9007199254740992 # 1 )
          by (vm_compute; auto).
        rewrite H19. rewrite Q2R_inv; try lra.
        unfold Q2R, Qnum, Qden. unfold bpow.
        assert (-53 + 1 = -52)%Z by auto.
        rewrite H20.
        assert (Z.pow_pos radix2 52 = 4503599627370496%Z) by (vm_compute; auto).
        rewrite H21. unfold Z2R, P2R. lra.
        unfold perturb.
        repeat rewrite B2Q_B2R_eq; auto.
601
      - cbn. Daisy_compute.
Heiko Becker's avatar
Heiko Becker committed
602
603
        apply Is_true_eq_true.
        repeat (apply andb_prop_intro; split; try auto using Is_true_eq_left).
604
      - cbn. Daisy_compute.
Heiko Becker's avatar
Heiko Becker committed
605
606
        apply Is_true_eq_true.
        repeat (apply andb_prop_intro; split; try auto using Is_true_eq_left).
607
608
      - cbn. Daisy_compute.
        inversion Heqo1; inversion Heqo2; subst.
Heiko Becker's avatar
Heiko Becker committed
609
610
        apply Is_true_eq_true.
        repeat (apply andb_prop_intro; split; try auto using Is_true_eq_left).
611
612
      - cbn. Daisy_compute.
        inversion Heqo1; inversion Heqo2; subst.
Heiko Becker's avatar
Heiko Becker committed
613
614
615
616
        apply Is_true_eq_true.
        repeat (apply andb_prop_intro; split; try auto using Is_true_eq_left). }
    assert (b = Div -> (Q2R (B2Q v_e2)) <> 0%R) as no_div_zero_float.
    { intros; subst; simpl in *.
617
618
619
      andb_to_prop R3.
      apply le_neq_bool_to_lt_prop in L3.
      destruct L3 as [case_low | case_high]; hnf; intros.
Heiko Becker's avatar
Heiko Becker committed
620
621
622
623
624
625
626
      - rewrite H19 in *.
        apply Qlt_Rlt in case_low.
        rewrite Q2R0_is_0, Q2R_plus in case_low. lra.
      - rewrite H19 in *.
        apply Qlt_Rlt in case_high.
        rewrite Q2R0_is_0, Q2R_minus in case_high; lra. }
    clear H2 H12 dVars_sound dVars_valid usedVars_64bit vars_typed fVars_defined
627
    usedVars_sound R2 R1 L1 L R6 L0 R3 R4 L2 R5 R7 L5 Heqo Heqo0 Heqo1 IHe1
Heiko Becker's avatar
Heiko Becker committed
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
    IHe2.
    pose proof (fexp_correct 53 1024 eq_refl) as fexp_corr.
    assert (forall k : Z, (-1022 < k)%Z ->
                     (53 <= k - Fcore_FLT.FLT_exp (3 - 1024 - 53) 53 k)%Z)
      as exp_valid.
    { intros k k_pos.
      unfold Fcore_FLT.FLT_exp; simpl.
      destruct (Z.max_spec_le (k - 53) (-1074)); omega. }
    pose proof (relative_error_N_ex radix2 (Fcore_FLT.FLT_exp (3 -1024 - 53) 53)
                                    (-1022)%Z 53%Z exp_valid)
      as rel_error_exists.
    rewrite eval_float_e1, eval_float_e2 in H1.
    unfold optionLift, normal_or_zero in *; simpl in *.
    assert (Normal (evalBinop b (B2R 53 1024 v_e1) (B2R 53 1024 v_e2)) M64 \/
            (evalBinop b (B2R 53 1024 v_e1) (B2R 53 1024 v_e2)) = 0)%R.
    { revert H1; intros case_val. destruct case_val; try auto.
      left; unfold Normal, Denormal in H15; unfold Normal;
        destruct H15 as [normal_b | [denormal_b |zero_b]].
      - repeat rewrite <- B2Q_B2R_eq; try auto.
      - destruct denormal_b.
        assert ((Rabs (evalBinop b (Q2R (B2Q v_e1)) (Q2R (B2Q v_e2)))) < (Rabs (evalBinop b (Q2R (B2Q v_e1)) (Q2R (B2Q v_e2)))))%R.
        { eapply Rlt_le_trans; eauto.
          repeat rewrite B2Q_B2R_eq; auto. }
        lra.
      - rewrite B2Q_B2R_eq in zero_b; auto.
        rewrite B2Q_B2R_eq in zero_b; auto.
        rewrite zero_b in *.
        rewrite Rabs_R0 in H1.
        unfold minValue, minExponentPos in H1.
        rewrite Q2R_inv in H1; [|vm_compute; congruence].
        unfold Q2R, Qnum, Qden in H1.
        assert (Z.pow_pos 2 1022 = 44942328371557897693232629769725618340449424473557664318357520289433168951375240783177119330601884005280028469967848339414697442203604155623211857659868531094441973356216371319075554900311523529863270738021251442209537670585615720368478277635206809290837627671146574559986811484619929076208839082406056034304%Z)
          by (vm_compute; auto).
        rewrite H2 in H1. rewrite <- Z2R_IZR in H1.  unfold IZR in H1.
        simpl in H1. lra. }
    pose proof (validValue_bounded b v_e1 v_e2 H2 H18) as cond_valid.
    destruct b; revert H1; intros case_eval.

    (* Addition *)
    + unfold evalBinop in *. unfold b64_plus.
      pose proof (Bplus_correct 53 1024 eq_refl eq_refl binop_nan_pl64 mode_NE
                                v_e1 v_e2 finite_e1 finite_e2)
        as addition_correct.
      rewrite cond_valid in addition_correct.
      destruct addition_correct as [add_round [finite_res _]].
      destruct case_eval as [eval_zero | eval_normal].
      (* resutl is zero *)
      * rewrite eval_zero in *.
        rewrite round_0_zero in *.
        exists (Bplus 53 1024 eq_refl eq_refl binop_nan_pl64 dmode v_e1 v_e2).
        split; try auto.
        rewrite B2Q_B2R_eq; try auto.
        unfold dmode; rewrite add_round.
        eapply Binop_dist' with (delta:=0%R); eauto.
        rewrite Rabs_R0; apply mTypeToQ_pos_R.
        unfold perturb, evalBinop.
        repeat rewrite B2Q_B2R_eq; try auto; lra.
      * simpl in *.
        destruct (rel_error_exists
                    (fun x => negb (Zeven x))
                    (B2R 53 1024 v_e1 + B2R 53 1024 v_e2)%R)
          as [eps [eps_bounded round_eq]].
        { eapply Rle_trans; eauto. unfold minValue, minExponentPos.
          rewrite Q2R_inv; [ | vm_compute; congruence].
          unfold Q2R, Qnum, Qden. rewrite <- Z2R_IZR.
          vm_compute. lra. }
        { exists (Bplus 53 1024 eq_refl eq_refl binop_nan_pl64 dmode v_e1 v_e2);
            split; try auto.
          rewrite B2Q_B2R_eq; try auto.
          unfold dmode.
          eapply Binop_dist' with (delta:=eps); eauto.
          - unfold mTypeToQ.
            assert (join M64 M64 = M64) by (vm_compute; auto).
            rewrite H1.
            eapply Rle_trans; eauto.
            unfold Qpower. unfold Qpower_positive.
            assert (pow_pos Qmult (2#1) 53 = 9007199254740992 # 1 )
              by (vm_compute; auto).
            rewrite H12. rewrite Q2R_inv; try lra.
            unfold Q2R, Qnum, Qden. rewrite <- Z2R_IZR.
            simpl; lra.
          - unfold perturb, evalBinop.
            repeat rewrite B2Q_B2R_eq; try auto.
            rewrite <- round_eq. rewrite <- add_round; auto. }
    (* Subtraction *)
    + unfold evalBinop in *. unfold b64_minus.
      pose proof (Bminus_correct 53 1024 eq_refl eq_refl binop_nan_pl64 mode_NE
                                v_e1 v_e2 finite_e1 finite_e2)
        as subtraction_correct.
      rewrite cond_valid in subtraction_correct.
      destruct subtraction_correct as [add_round [finite_res _]].
      destruct case_eval as [eval_zero | eval_normal].
      (* resutl is zero *)
      * rewrite eval_zero in *.
        rewrite round_0_zero in *.
        exists (Bminus 53 1024 eq_refl eq_refl binop_nan_pl64 dmode v_e1 v_e2).
        split; try auto.
        rewrite B2Q_B2R_eq; try auto.
        unfold dmode; rewrite add_round.
        eapply Binop_dist' with (delta:=0%R); eauto.
        rewrite Rabs_R0; apply mTypeToQ_pos_R.
        unfold perturb, evalBinop.
        repeat rewrite B2Q_B2R_eq; try auto; lra.
      * simpl in *.
        destruct (rel_error_exists
                    (fun x => negb (Zeven x))
                    (B2R 53 1024 v_e1 - B2R 53 1024 v_e2)%R)
          as [eps [eps_bounded round_eq]].
        { eapply Rle_trans; eauto. unfold minValue, minExponentPos.
          rewrite Q2R_inv; [ | vm_compute; congruence].
          unfold Q2R, Qnum, Qden. rewrite <- Z2R_IZR.
          vm_compute. lra. }
        { exists (Bminus 53 1024 eq_refl eq_refl binop_nan_pl64 dmode v_e1 v_e2);
            split; try auto.
          rewrite B2Q_B2R_eq; try auto.
          unfold dmode.
          eapply Binop_dist' with (delta:=eps); eauto.
          - unfold mTypeToQ.
            assert (join M64 M64 = M64) by (vm_compute; auto).
            rewrite H1.
            eapply Rle_trans; eauto.
            unfold Qpower. unfold Qpower_positive.
            assert (pow_pos Qmult (2#1) 53 = 9007199254740992 # 1 )
              by (vm_compute; auto).
            rewrite H12. rewrite Q2R_inv; try lra.
            unfold Q2R, Qnum, Qden. rewrite <- Z2R_IZR.
            simpl; lra.
          - unfold perturb, evalBinop.
            repeat rewrite B2Q_B2R_eq; try auto.
            rewrite <- round_eq. rewrite <- add_round; auto. }
    (* Multiplication *)
    + unfold evalBinop in *. unfold b64_mult.
      pose proof (Bmult_correct 53 1024 eq_refl eq_refl binop_nan_pl64 mode_NE
                                v_e1 v_e2)
        as mult_correct.
      rewrite cond_valid in mult_correct.
      destruct mult_correct as [mult_round [finite_res _]].
      destruct case_eval as [eval_zero | eval_normal].
      (* resutl is zero *)
      * rewrite eval_zero in *.
        rewrite round_0_zero in *.
        exists (Bmult 53 1024 eq_refl eq_refl binop_nan_pl64 dmode v_e1 v_e2).
        split; try auto.
        rewrite B2Q_B2R_eq; try auto.
        unfold dmode; rewrite mult_round.
        eapply Binop_dist' with (delta:=0%R); eauto.
        rewrite Rabs_R0; apply mTypeToQ_pos_R.
        unfold perturb, evalBinop.
        repeat rewrite B2Q_B2R_eq; try auto; lra.
        rewrite finite_e1, finite_e2 in finite_res.
        auto.
      * simpl in *.
        destruct (rel_error_exists
                    (fun x => negb (Zeven x))
                    (B2R 53 1024 v_e1 * B2R 53 1024 v_e2)%R)
          as [eps [eps_bounded round_eq]].
        { eapply Rle_trans; eauto. unfold minValue, minExponentPos.
          rewrite Q2R_inv; [ | vm_compute; congruence].
          unfold Q2R, Qnum, Qden. rewrite <- Z2R_IZR.
          vm_compute. lra. }
        { exists (Bmult 53 1024 eq_refl eq_refl binop_nan_pl64 dmode v_e1 v_e2);
            split; try auto.
          rewrite B2Q_B2R_eq; try auto.
          unfold dmode.
          eapply Binop_dist' with (delta:=eps); eauto.
          - unfold mTypeToQ.
            assert (join M64 M64 = M64) by (vm_compute; auto).
            rewrite H1.
            eapply Rle_trans; eauto.
            unfold Qpower. unfold Qpower_positive.
            assert (pow_pos Qmult (2#1) 53 = 9007199254740992 # 1 )
              by (vm_compute; auto).
            rewrite H12. rewrite Q2R_inv; try lra.
            unfold Q2R, Qnum, Qden. rewrite <- Z2R_IZR.
            simpl; lra.
          - unfold perturb, evalBinop.
            repeat rewrite B2Q_B2R_eq; try auto.
            rewrite <- round_eq. rewrite <- mult_round; auto.
          - rewrite finite_e1, finite_e2 in finite_res; auto. }
    (* Division *)
    + unfold evalBinop in *. unfold b64_div.
      pose proof (Bdiv_correct 53 1024 eq_refl eq_refl binop_nan_pl64 mode_NE
                                v_e1 v_e2)
        as division_correct.
      rewrite cond_valid in division_correct.
      destruct division_correct as [div_round [finite_res _]].
      rewrite <- B2Q_B2R_eq; auto.
      destruct case_eval as [eval_zero | eval_normal].
      (* resutl is zero *)
      * rewrite eval_zero in *.
        rewrite round_0_zero in *.
        exists (Bdiv 53 1024 eq_refl eq_refl binop_nan_pl64 dmode v_e1 v_e2).
        split; try auto.
        rewrite B2Q_B2R_eq; try auto.
        unfold dmode; rewrite div_round.
        eapply Binop_dist' with (delta:=0%R); eauto.
        rewrite Rabs_R0; apply mTypeToQ_pos_R.
        unfold perturb, evalBinop.
        repeat rewrite B2Q_B2R_eq; try auto; lra.
        rewrite finite_e1 in finite_res; auto.
      * simpl in *.
        destruct (rel_error_exists
                    (fun x => negb (Zeven x))
                    (B2R 53 1024 v_e1 / B2R 53 1024 v_e2)%R)
          as [eps [eps_bounded round_eq]].
        { eapply Rle_trans; eauto. unfold minValue, minExponentPos.
          rewrite Q2R_inv; [ | vm_compute; congruence].
          unfold Q2R, Qnum, Qden. rewrite <- Z2R_IZR.
          vm_compute. lra. }
        { exists (Bdiv 53 1024 eq_refl eq_refl binop_nan_pl64 dmode v_e1 v_e2);
            split; try auto.
          rewrite B2Q_B2R_eq; try auto.
          unfold dmode.
          eapply Binop_dist' with (delta:=eps); eauto.
          - unfold mTypeToQ.
            assert (join M64 M64 = M64) by (vm_compute; auto).
            rewrite H1.
            eapply Rle_trans; eauto.
            unfold Qpower. unfold Qpower_positive.
            assert (pow_pos Qmult (2#1) 53 = 9007199254740992 # 1 )
              by (vm_compute; auto).
            rewrite H12. rewrite Q2R_inv; try lra.
            unfold Q2R, Qnum, Qden. rewrite <- Z2R_IZR.
            simpl; lra.
          - unfold perturb, evalBinop.
            repeat rewrite B2Q_B2R_eq; try auto.
            rewrite <- round_eq. rewrite <- div_round; auto.
          - rewrite finite_e1 in finite_res; auto. }
  - inversion noDowncast_e.
Qed.

Lemma bstep_gives_IEEE (f:cmd fl64) :
  forall E1 E2 E2_real Gamma tMap vR vF A P fVars dVars outVars,
    (forall x, (toREnv E2) x = E2_real x) ->
    approxEnv E1 Gamma A fVars dVars E2_real ->
    ssa (B2Qcmd f) (NatSet.union fVars dVars) outVars ->
    typeCheckCmd (B2Qcmd f) Gamma tMap = true ->
    validIntervalboundsCmd (B2Qcmd f) A P dVars = true ->
    validErrorboundCmd (B2Qcmd f) tMap A dVars = true ->
    FPRangeValidatorCmd (B2Qcmd f) A tMap dVars = true ->
    bstep (toREvalCmd (toRCmd (B2Qcmd f))) E1 (toRMap Gamma) vR M0 ->
    bstep (toRCmd (B2Qcmd f)) (toREnv E2) Gamma vF M64 ->
    NatSet.Subset (NatSet.diff (freeVars (B2Qcmd f)) dVars) fVars ->
    is64BitBstep (B2Qcmd f) ->
    noDowncastFun (B2Qcmd f) ->
    bstep_valid f E2 ->
874
875
876
    dVars_range_valid dVars E1 A ->
    fVars_P_sound fVars E1 P ->
    vars_typed (NatSet.union fVars dVars) Gamma ->
Heiko Becker's avatar
Heiko Becker committed
877
878
879
      (forall v,
        NatSet.In v dVars ->
        exists vF m,
880
        (E2_real v = Some vF /\ DaisyMap.find (Var Q v) tMap= Some m /\
Heiko Becker's avatar
Heiko Becker committed
881
882
883
884
885
886
887
888
889
890
        validFloatValue vF m)) ->
      (forall v, NatSet.In v (freeVars (B2Qcmd f)) -> Gamma v = Some M64) ->
      exists v,
        bstep_float f E2 = Some v /\
        bstep (toRCmd (B2Qcmd f)) (toREnv E2) Gamma (Q2R (B2Q v)) M64.
Proof.
  induction f;
    intros * envs_eq approxEnv_E1_E2_real ssa_f typeCheck_f valid_ranges_f
                     valid_roundoffs_f valid_float_ranges bstep_real bstep_float
                     freeVars_sound is64_eval nodowncast_f bstep_sound
891
                     dVars_sound fVars_defined vars_typed dVars_valid
Heiko Becker's avatar
Heiko Becker committed
892
                     freeVars_typed;
893
894
895
    cbn in *; Daisy_compute_asm; try congruence; type_conv; subst;
      unfold Ltacs.optionLift;
      inversion bstep_float; inversion bstep_real;
Heiko Becker's avatar
Heiko Becker committed
896
897
898
899
      inversion ssa_f; subst; simpl in *;
        repeat (match goal with
                | H: _ = true |- _ => andb_to_prop H
                end).
900
  - assert (DaisyMap.find (B2Qexp e) tMap= Some M64).
Heiko Becker's avatar
Heiko Becker committed
901
902
903
904
    { eapply typing_exp_64_bit; try eauto.
      simpl in *; destruct nodowncast_f; auto.
      destruct is64_eval; auto.
      intros; apply freeVars_typed.
905
      set_tac.
Heiko Becker's avatar
Heiko Becker committed
906
907
908
909
      split; [ set_tac | ].
      hnf; intros; subst.
      apply H26.
      apply (H25 n H).  }
910
    assert (m1 = M64).
Heiko Becker's avatar
Heiko Becker committed
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
    { eapply typing_agrees_exp; eauto. }
    subst.
    assert (exists v_e, eval_exp_float e E2 = Some v_e /\
                   eval_exp (toREnv E2) Gamma (toRExp (B2Qexp e)) (Q2R (B2Q v_e)) M64)
           as eval_float_e.
    { eapply eval_exp_gives_IEEE; try eauto.
      - hnf; intros. rewrite NatSet.diff_spec in H0.
        destruct H0.
        specialize (H25 a H0). rewrite NatSet.union_spec in H25.
        destruct H25; try congruence; auto.
      - destruct is64_eval; auto.
      - destruct nodowncast_f; auto.
      - destruct bstep_sound; auto.
      - intros. apply freeVars_typed.
        rewrite NatSet.remove_spec, NatSet.union_spec.
        split; try auto.
        hnf; intros; subst.
928
929
        specialize (H25 n H0).
        set_tac.  apply H26; set_tac. }
Heiko Becker's avatar
Heiko Becker committed
930
931
    destruct eval_float_e as [v_e [eval_float_e eval_rel_e]].
    assert (forall v m, eval_exp E2_real Gamma (toRExp (B2Qexp e)) v m ->
932
                   Rabs (v0 - v) <= Q2R e2)%R
Heiko Becker's avatar
Heiko Becker committed
933
934
935
936
      as err_e_valid.
    { eapply validErrorbound_sound; try eauto.
      - hnf; intros. rewrite NatSet.diff_spec in H0.
        destruct H0. specialize (H25 a H0). rewrite NatSet.union_spec in H25.
937
938
        destruct H25; try auto; congruence. }
    assert (Rabs (v0 - (Q2R (B2Q v_e))) <= Q2R e2)%R.
Heiko Becker's avatar
Heiko Becker committed
939
940
941
    { eapply err_e_valid. eapply eval_eq_env; eauto. }
    (* Now construct a new evaluation according to our big-step semantics
       using lemma validErrorboundCmd_gives_eval *)
942
943
    (* destruct (A (getRetExp (B2Qcmd f))) as [iv_f err_f] eqn:A_f. *)
    (* destruct iv_f as [ivlo_f ivhi_f]. *)
Heiko Becker's avatar
Heiko Becker committed
944
    assert (exists vF m, bstep (toRCmd (B2Qcmd f)) (updEnv n (Q2R (B2Q v_e)) E2_real) (updDefVars n M64 Gamma) vF m).
945
    { eapply validErrorboundCmd_gives_eval with (E1 := updEnv n v0 E1); eauto.
Heiko Becker's avatar
Heiko Becker committed
946
947
948
      - eapply approxUpdBound; eauto.
        rewrite Qeq_bool_iff in R1.
        eapply Rle_trans; eauto.
949
950
        canonize_hyps. rewrite <- R1.
        inversion Heqo0; subst; lra.
Heiko Becker's avatar
Heiko Becker committed
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
      - eapply ssa_equal_set; eauto.
        hnf; split; intros.
        + rewrite NatSet.add_spec, NatSet.union_spec in *.
          rewrite NatSet.add_spec in H1; destruct H1; auto.
          destruct H1; auto.
        + rewrite NatSet.add_spec in H1;
            rewrite NatSet.union_spec, NatSet.add_spec in *;
            destruct H1; auto. destruct H1; auto.
      - hnf; intros. rewrite NatSet.diff_spec in H1.
        destruct H1. apply freeVars_sound.
        rewrite NatSet.diff_spec, NatSet.remove_spec, NatSet.union_spec.
        split; try auto. split; try auto.
        hnf; intros; subst. apply H2. rewrite NatSet.add_spec. auto.
        rewrite NatSet.add_spec in H2. hnf; intros; apply H2; auto.
      - eapply (swap_Gamma_bstep (Gamma1:= updDefVars n M0 (toRMap Gamma)));
          eauto.
        intros; unfold updDefVars, toRMap.
        destruct (n0 =? n); auto.
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
      - unfold dVars_range_valid in *. intros. unfold updEnv. set_tac.
        destruct H1; subst.
        + exists v0, (q1, q2), e1; split; try eauto.
          * rewrite Nat.eqb_refl; auto.
          * split; try auto.
            edestruct validIntervalbounds_sound
              as [iv_e [err_e [v_e' [map_e [? ?]]]]]; eauto.
            { set_tac; split; try auto. split; try auto.
              hnf; intros. eapply H26. subst; set_tac. }
            simpl. destr_factorize; simpl in *.
            canonize_hyps. rewrite <- R4, <- R3.
            rewrite <- (meps_0_deterministic _ H17 H1) in H2; auto.
        + destruct H1.
          rewrite <- Nat.eqb_neq in H1.
          rewrite H1.
Heiko Becker's avatar
Heiko Becker committed
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
          apply dVars_sound; auto.
      - intros; unfold updEnv.
        destruct (v1 =? n) eqn:?.
        + rewrite Nat.eqb_eq in Heqb; subst; exfalso.
          set_tac. apply H26; rewrite NatSet.union_spec; auto.
        + apply fVars_defined; rewrite NatSet.mem_spec in *; auto.
      - intros. unfold updDefVars. destruct (v1 =? n) eqn:?.
        + exists M64; auto.
        + apply vars_typed.
          rewrite Nat.eqb_neq in Heqb.
          set_tac.
          rewrite NatSet.union_spec, NatSet.add_spec in H1.
          destruct H1 as [HA |[HB | HC]]; try auto; congruence. }
    unfold optionLift. rewrite eval_float_e.
    assert (tMap (getRetExp (B2Qcmd f)) = Some M64).
    { eapply typingSoundnessCmd; eauto.
      destruct (tMap (B2Qexp e)); destruct (tMap (Var Q n)); try congruence;
        andb_to_prop R5; type_conv; auto. }
    destruct H1 as [vF_new [m_f bstep_float_new]].
    assert (m_f = M64).
    { eapply typing_agrees_cmd; eauto.
      destruct (tMap (B2Qexp e));
        destruct (tMap (Var Q n)); try congruence; andb_to_prop R5;
          type_conv; subst; auto. }
    subst.
    destruct (IHf (updEnv n v0 E1) (updFlEnv n v_e E2)
                  (updEnv n (Q2R (B2Q v_e)) E2_real) (updDefVars n M64 Gamma) tMap
                  vR vF_new A P fVars (NatSet.add n dVars) outVars); try eauto.
    + intros. unfold toREnv, updFlEnv, updEnv.
      destruct (x =? n); auto. rewrite <- envs_eq. unfold toREnv; auto.
    + apply approxUpdBound; auto.
      eapply Rle_trans; eauto.
      rewrite Qeq_bool_iff in R1; apply Qle_Rle; rewrite R1; lra.
    + eapply ssa_equal_set; eauto.
      hnf; split; intros.
      * rewrite NatSet.add_spec, NatSet.union_spec in *.
        rewrite NatSet.add_spec in H1; destruct H1; auto.
        destruct H1; auto.
      * rewrite NatSet.add_spec in H1;
          rewrite NatSet.union_spec, NatSet.add_spec in *;
          destruct H1; auto. destruct H1; auto.
    + destruct (tMap (B2Qexp e)); destruct (tMap (Var Q n)); try congruence;
        andb_to_prop R5; type_conv; auto.
    + eapply (swap_Gamma_bstep (Gamma1:= updDefVars n M0 (toRMap Gamma)));
        eauto.
      intros; unfold updDefVars, toRMap.
      destruct (n0 =? n); auto.
    + eapply (bstep_eq_env (E1 := updEnv n (Q2R (B2Q v_e)) E2_real)); eauto.
      intros x; unfold updEnv, updFlEnv, toREnv.
      destruct (x =? n); try auto.
      rewrite <- envs_eq. auto.
    + hnf; intros. rewrite NatSet.diff_spec in *.
      destruct H1. apply freeVars_sound.
      rewrite NatSet.diff_spec, NatSet.remove_spec, NatSet.union_spec.
      split; try auto. split; try auto.
      hnf; intros; subst. apply H3. rewrite NatSet.add_spec. auto.
      rewrite NatSet.add_spec in H3. hnf; intros; apply H3; auto.
    + destruct is64_eval as [HA [HB HC]]; auto.
    + destruct nodowncast_f as [HA HB]; auto.
    + destruct bstep_sound as [eval_sound bstep_sound].
      rewrite eval_float_e in bstep_sound; unfold optionLift in bstep_sound.
      auto.
    + intros; unfold updEnv.
      destruct (v1 =? n) eqn:?.
      * rewrite Nat.eqb_eq in Heqb; subst; exfalso.
        set_tac. apply H26; rewrite NatSet.union_spec; auto.
      * apply fVars_defined. auto.
    + intros. unfold updDefVars. destruct (v1 =? n) eqn:?.
      * exists M64; auto.
      * apply vars_typed.
        rewrite Nat.eqb_neq in Heqb.
        set_tac.
        destruct H1 as [HA |HB]; try auto.
        rewrite NatSet.add_spec in HB. destruct HB; try auto; congruence.
    + intros. unfold updEnv. set_tac.
      rewrite NatSet.add_spec in H1.
      destruct (v1 =? n) eqn:?;
      destruct H1; subst; try congruence.
      * exists v0; split; try auto.
        assert (exists vR, eval_exp E1 (toRMap Gamma) (toREval (toRExp (B2Qexp e))) vR M0 /\
                      Q2R (fst (fst (A (B2Qexp e)))) <= vR <= Q2R (snd (fst (A (B2Qexp e)))))%R.
        { eapply validIntervalbounds_sound; eauto.
            - intros. eapply dVars_sound; rewrite NatSet.mem_spec in *; auto.
            - instantiate (1:=fVars).
              hnf; intros; rewrite NatSet.diff_spec in *.
              destruct H1.
              specialize (H25 a H1); rewrite NatSet.union_spec in H25;
                destruct H25; try auto; congruence.
            - intros; apply fVars_defined. rewrite NatSet.mem_spec in *; auto.
            - intros. apply vars_typed.
              rewrite NatSet.mem_spec, NatSet.union_spec in *; auto. }
        destruct H1 as [vR_e [eval_real_e bounded_e]].
        rewrite <- (meps_0_deterministic (toRExp (B2Qexp e)) eval_real_e H17).
        rewrite Nat.eqb_eq in Heqb; subst.
        split;
            destruct bounded_e; eapply Rle_trans; eauto;
            apply Qle_Rle.
        apply Qeq_bool_iff in R4; rewrite R4; lra.
        apply Qeq_bool_iff in R3; rewrite R3; lra.
      * rewrite Nat.eqb_eq in Heqb; subst.
        exfalso; apply H26; rewrite NatSet.union_spec; auto.
      * rewrite Nat.eqb_neq in Heqb.
        congruence.
      * rewrite Nat.eqb_neq in Heqb.
        apply dVars_sound; auto.
    + intros. rewrite NatSet.add_spec in H1; unfold updEnv.
      destruct (v1 =? n) eqn:?; destruct H1; subst; try congruence.
      * destruct (tMap (Var Q n)) eqn:?; exists (Q2R (B2Q v_e)).
        exists m; repeat split; try auto.
        eapply FPRangeValidator_sound; eauto.
        { eapply eval_eq_env; eauto.
          rewrite H in *; andb_to_prop R5;
            type_conv; subst; auto. }
        { set_tac. split; try auto.
          rewrite NatSet.remove_spec, NatSet.union_spec.
          split; try auto.
          hnf; intros; subst. apply H26. apply H25; auto. }
        { rewrite H in *; congruence. }
      * rewrite Nat.eqb_eq in Heqb; subst.
        exists (Q2R (B2Q v_e)); rewrite H in *.
        destruct (tMap (Var Q n)) eqn:?; try congruence;
          andb_to_prop R5; type_conv; subst.
        exists M64; repeat split; try auto.
        eapply FPRangeValidator_sound; eauto.
        { eapply eval_eq_env; eauto. }
        { set_tac. split; try auto.
          rewrite NatSet.remove_spec, NatSet.union_spec.
          split; try auto.
          hnf; intros; subst. apply H26. apply H25; auto. }
      * rewrite Nat.eqb_neq in Heqb; congruence.
      * apply dVars_valid; auto.
    + intros. unfold updDefVars.
      destruct (v1 =? n) eqn:?; try auto.
      apply freeVars_typed; set_tac.
      rewrite NatSet.remove_spec, NatSet.union_spec; split; try auto.
      hnf; intros; subst; rewrite Nat.eqb_neq in Heqb; congruence.
    + exists x; destruct H1;
        split; try auto.
      eapply let_b; eauto.
      eapply bstep_eq_env with (E1:= toREnv (updFlEnv n v_e E2)); eauto.
      intros; unfold toREnv, updFlEnv, updEnv.
      destruct (x0 =? n); auto.
  - edestruct (eval_exp_gives_IEEE); eauto.
    exists x; destruct H.
    split; try auto. apply ret_b; auto.
Qed.

Theorem IEEE_connection_exp e A P E1 E2 defVars:
  approxEnv E1 defVars A (usedVars (B2Qexp e)) (NatSet.empty) (toREnv E2) ->
  is64BitEval (B2Qexp e) ->
  noDowncast (B2Qexp e) ->
  eval_exp_valid e E2 ->
  (forall v,
      NatSet.In v (usedVars (B2Qexp e)) ->
      defVars v = Some M64) ->
  (forall v,
      NatSet.In v (usedVars (B2Qexp e)) ->
      exists vR,
        (E1 v = Some vR) /\
        Q2R (fst (P v)) <= vR <= Q2R(snd (P v)))%R ->
  (forall v,
      NatSet.In v (usedVars (B2Qexp e)) ->
      exists m, defVars v = Some m) ->
  CertificateChecker (B2Qexp e) A P defVars = true ->
  exists vR vF, (* m, currently = M64 *)
    eval_exp E1 (toRMap defVars) (toREval (toRExp (B2Qexp e))) vR M0 /\
    eval_exp_float e E2 = Some vF /\
    eval_exp (toREnv E2) defVars (toRExp (B2Qexp e)) (Q2R (B2Q vF)) M64 /\
    (Rabs (vR - Q2R (B2Q vF )) <= Q2R (snd (A (B2Qexp e))))%R.
Proof.
  intros.
  edestruct Certificate_checking_is_sound; eauto.
  - intros. set_tac.
  - intros. set_tac.
  - destruct H7 as [vF [mF [eval_real [eval_float roundoff_sound]]]].
    unfold CertificateChecker in H6.
    andb_to_prop H6.
    assert (typeMap defVars (B2Qexp e) (B2Qexp e) = Some M64).
    { eapply typing_exp_64_bit; eauto. }
    assert (mF = M64).
    { eapply typing_agrees_exp; eauto. }
    subst.
    edestruct eval_exp_gives_IEEE; eauto.
    + set_tac.
    + intros. apply H5. destruct H7; try auto.
      inversion H7.
    + intros. inversion H7.
    + intros. inversion H7.
    + destruct H7 as [eval_float_f eval_rel].
      exists x; exists x0. repeat split; try auto.
      eapply roundoff_sound; eauto.
Qed.

Theorem IEEE_connection_cmd (f:cmd fl64) (absenv:analysisResult) P
        defVars E1 E2:
    approxEnv E1 defVars absenv (freeVars (B2Qcmd f)) NatSet.empty (toREnv E2) ->
    is64BitBstep (B2Qcmd f) ->
    noDowncastFun (B2Qcmd f) ->
    bstep_valid f E2 ->
    (forall v, NatSet.In v (freeVars (B2Qcmd f)) ->
          defVars v = Some M64) ->
    (forall v, NatSet.mem v (freeVars (B2Qcmd f))= true ->
          exists vR, E1 v = Some vR /\
                (Q2R (fst (P v)) <= vR <= Q2R (snd (P v)))%R) ->
    (forall v, (v) mem (freeVars (B2Qcmd f)) = true ->
          exists m : mType,
            defVars v = Some m) ->
    CertificateCheckerCmd (B2Qcmd f) absenv P defVars = true ->
    exists vR vF m,
    bstep (toREvalCmd (toRCmd (B2Qcmd f))) E1 (toRMap defVars) vR M0 /\
    bstep_float f E2 = Some vF /\
    bstep (toRCmd (B2Qcmd f)) (toREnv E2) defVars (Q2R (B2Q vF)) m /\
    (forall vF m,
        bstep (toRCmd (B2Qcmd f)) (toREnv E2) defVars vF m ->
        (Rabs (vR - vF) <= Q2R (snd (absenv (getRetExp (B2Qcmd f)))))%R).
(**
   The proofs is a simple composition of the soundness proofs for the range
   validator and the error bound validator.
**)
Proof.
  intros.
  unfold CertificateCheckerCmd in *.
  andb_to_prop H6.
  pose proof (validSSA_sound _ _ R0).
  destruct H6 as [outVars ssa_f].
  edestruct Certificate_checking_cmds_is_sound; eauto.
  - unfold CertificateCheckerCmd.
    apply Is_true_eq_true.
    repeat (apply andb_prop_intro; split; try auto using Is_true_eq_left).
  - destruct H6 as [vF [m [bstep_real [bstep_float roundoff_sound]]]].

    assert (typeMapCmd defVars (B2Qcmd f) (getRetExp (B2Qcmd f)) = Some M64).
    { eapply typing_cmd_64_bit; eauto.  }
    assert (m = M64).
    { eapply typing_agrees_cmd; eauto. }
    subst.
    edestruct bstep_gives_IEEE; eauto.
    + eapply ssa_equal_set; eauto.
      hnf; intros; split; intros; set_tac.
      rewrite NatSet.union_spec in H7; destruct H7; try auto.
      inversion H7.
    + set_tac.
    + intros. apply H4; rewrite NatSet.mem_spec; auto.
    + intros. apply H5. set_tac. destruct H7; try auto.
      inversion H7.
    + intros. inversion H7.
    + intros * HA; inversion HA.
    + exists x; exists x0; exists M64.
      destruct H7 as [bstep_float2 bstep_rel].
      repeat split; auto.
Qed.