Expressions.v 13.3 KB
Newer Older
1
(**
2
  Formalization of the base expression language for the daisy framework
3
 **)
4
Require Import Coq.Reals.Reals Coq.micromega.Psatz Coq.QArith.QArith Coq.QArith.Qreals.
5
Require Import Daisy.Infra.RealRationalProps Daisy.Infra.RationalSimps.
6
Require Export Daisy.Infra.Abbrevs Daisy.Infra.RealSimps Daisy.Infra.NatSet Daisy.IntervalArithQ Daisy.IntervalArith Daisy.Infra.MachineType.
7

8 9 10 11 12
(**
  Expressions will use binary operators.
  Define them first
**)
Inductive binop : Type := Plus | Sub | Mult | Div.
13

14
(** TODO: simplify pattern matching **)
15
Definition binopEqBool (b1:binop) (b2:binop) :=
16 17 18 19 20 21 22
  match b1 with
    Plus => match b2 with Plus => true |_ => false end
  | Sub => match b2 with Sub => true |_ => false end
  | Mult => match b2 with Mult => true |_ => false end
  | Div => match b2 with Div => true |_ => false end
  end.

23 24 25 26
(**
  Next define an evaluation function for binary operators on reals.
  Errors are added on the expression evaluation level later.
 **)
27
Definition evalBinop (o:binop) (v1:R) (v2:R) :=
28 29 30 31 32 33
  match o with
  | Plus => Rplus v1 v2
  | Sub => Rminus v1 v2
  | Mult => Rmult v1 v2
  | Div => Rdiv v1 v2
  end.
34

35 36 37 38 39 40
Lemma binopEqBool_refl b:
  binopEqBool b b = true.
Proof.
  case b; auto.
Qed.

41 42 43 44 45 46
(**
   Expressions will use unary operators.
   Define them first
 **)
Inductive unop: Type := Neg | Inv.

47
Definition unopEqBool (o1:unop) (o2:unop) :=
48 49 50 51 52 53 54
  match o1 with
  |Neg => match o2 with |Neg => true |_=> false end
  |Inv => match o2 with |Inv => true |_ => false end
  end.

(**
   Define evaluation for unary operators on reals.
55
   Errors are added in the expression evaluation level later.
56
 **)
57
Definition evalUnop (o:unop) (v:R):=
58 59 60 61 62
  match o with
  |Neg => (- v)%R
  |Inv => (/ v)%R
  end .

63 64


65
(**
66 67
  Define expressions parametric over some value type V.
  Will ease reasoning about different instantiations later.
68
**)
69
Inductive exp (V:Type): Type :=
70
  Var: mType -> nat -> exp V
71
| Const: mType -> V -> exp V
72
| Unop: unop -> exp V -> exp V
73 74
| Binop: binop -> exp V -> exp V -> exp V
| Downcast: mType -> exp V -> exp V.
75

76 77 78 79
(**
  Boolean equality function on expressions.
  Used in certificates to define the analysis result as function
**)
80
Fixpoint expEqBool (e1:exp Q) (e2:exp Q) :=
81
  match e1 with
82
  |Var _ m1 v1 =>
83
   match e2 with
84
   |Var _ m2 v2 => andb (mTypeEqBool m1 m2) (v1 =? v2)
85 86
   | _=> false
   end
87
  |Const m1 n1 =>
88
   match e2 with
89
   |Const m2 n2 => andb (mTypeEqBool m1 m2) (Qeq_bool n1 n2)
90 91
   | _=> false
   end
92 93
  |Unop o1 e11 =>
   match e2 with
94
   |Unop o2 e22 => andb (unopEqBool o1 o2) (expEqBool e11 e22)
95 96 97
   |_ => false
   end
  |Binop o1 e11 e12 =>
98
   match e2 with
99
   |Binop o2 e21 e22 => andb (binopEqBool o1 o2) (andb (expEqBool e11 e21) (expEqBool e12 e22))
100 101
   |_ => false
   end
102 103 104 105 106 107 108
  |Downcast m1 f1 =>
   match e2 with
   |Downcast m2 f2 => andb (mTypeEqBool m1 m2) (expEqBool f1 f2)
   |_ => false                   
   end
  end.

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

(* Lemma expEqBool_eq e1 e2: *)
(*   e1 = e2 -> *)
(*   expEqBool e1 e2 = true. *)
(* Proof. *)
(*   revert e1 e2. *)
(*   induction e1; intros; split; intros. *)
(*   - simpl in H. destruct e2; try inversion H; apply andb_true_iff in H; destruct H. *)
(*     f_equal. *)
(*     + apply EquivEqBoolEq; auto. *)
(*     + apply beq_nat_true; auto. *)
(*   - simpl. destruct e2; try inversion H. *)
(*     rewrite mTypeEqBool_refl. *)
(*     simpl. *)
(*     symmetry; apply beq_nat_refl. *)
(*   - simpl in H; destruct e2; try inversion H. apply andb_true_iff in H; destruct H. *)
(*     f_equal. *)
(*     + apply EquivEqBoolEq; auto. *)
(*     + admit. *)
(*   -  *)
      


132
Lemma expEqBool_refl e:
133 134 135 136 137 138 139 140 141 142
  expEqBool e e = true.
Proof.
  induction e; apply andb_true_iff; split; simpl in *; auto; try (apply EquivEqBoolEq; auto). 
  - symmetry; apply beq_nat_refl.
  - apply Qeq_bool_iff; lra.
  - case u; auto.
  - case b; auto.
  - apply andb_true_iff; split.
    apply IHe1. apply IHe2.
Qed.
143

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
Lemma beq_nat_sym a b:
  beq_nat a b = beq_nat b a.
Proof.
  case_eq (a =? b); intros.
  - apply beq_nat_true in H.
    rewrite H.
    apply beq_nat_refl. 
  - apply beq_nat_false in H.
    case_eq (b =? a); intros.
    + apply beq_nat_true in H0.
      rewrite H0 in H.
      auto.
    + auto.
Qed.      

Lemma expEqBool_sym e e':
  expEqBool e e' = expEqBool e' e.
Proof.
  revert e'.
  induction e; intros e'; destruct e'; simpl; try auto.
  - f_equal.
    + apply mTypeEqBool_sym; auto.
    + apply beq_nat_sym.
  - f_equal.
    + apply mTypeEqBool_sym; auto.
    + apply Qeq_bool_sym.
  - f_equal.
    + destruct u; auto.
    + apply IHe.
  - f_equal.      
    + destruct b; auto.
    + f_equal.
      * apply IHe1.
      * apply IHe2.
  - f_equal.
    + apply mTypeEqBool_sym; auto.
    + apply IHe.
Qed.

='s avatar
= committed
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
Lemma expEqBool_trans e f g:
  expEqBool e f = true ->
  expEqBool f g = true ->
  expEqBool e g = true.
Proof.
  revert e f g; induction e; destruct f; intros; simpl in H; inversion H; rewrite H; clear H; destruct g; simpl in H0; inversion H0; rewrite H0; clear H0; apply andb_true_iff in H1; destruct H1; apply andb_true_iff in H2; destruct H2; simpl.
  - apply EquivEqBoolEq in H1.
    apply EquivEqBoolEq in H.
    apply beq_nat_true in H2.
    apply beq_nat_true in H0.
    subst.
    rewrite <- beq_nat_refl,mTypeEqBool_refl.
    auto.
  - apply EquivEqBoolEq in H1.
    apply EquivEqBoolEq in H.
    subst.
    rewrite mTypeEqBool_refl; simpl.
    apply Qeq_bool_iff in H2.
    apply Qeq_bool_iff in H0.
    apply Qeq_bool_iff.
    lra.
  - assert (u = u0) by (destruct u; destruct u0; inversion H1; auto).
    assert (u0 = u1) by (destruct u0; destruct u1; inversion H; auto).
    subst.
    assert (unopEqBool u1 u1 = true) by (destruct u1; auto).
    apply andb_true_iff; split; try auto.
    eapply IHe; eauto.
  - apply andb_true_iff; split.
    + destruct b; destruct b0; destruct b1; auto.
    + apply andb_true_iff in H2; destruct H2.
      apply andb_true_iff in H0; destruct H0.
      apply andb_true_iff; split.
      eapply IHe1; eauto.
      eapply IHe2; eauto.
  - apply EquivEqBoolEq in H1.
    apply EquivEqBoolEq in H.
    subst.
    rewrite mTypeEqBool_refl; simpl.
    eapply IHe; eauto.
Qed.

    


227 228 229
Fixpoint toRExp (e:exp Q) :=
  match e with
  |Var _ m v => Var R m v
230
  |Const m n => Const m (Q2R n)
231 232 233
  |Unop o e1 => Unop o (toRExp e1)
  |Binop o e1 e2 => Binop o (toRExp e1) (toRExp e2)
  |Downcast m e1 => Downcast m (toRExp e1)
234
  end.
235

236 237 238
Fixpoint toREval (e:exp R) :=
  match e with
  | Var _ _ v => Var R M0 v
239
  | Const _ n => Const M0 n
240 241
  | Unop o e1 => Unop o (toREval e1)
  | Binop o e1 e2 => Binop o (toREval e1) (toREval e2)
242
  | Downcast _ e1 =>  (toREval e1)
243
  end.
244

245 246 247 248 249 250 251 252 253
Definition toREvalEnv (E:env) : env :=
  fun (n:nat) =>
    let s := (E n) in
    match s with
    | None => None
    | Some (r, _) => Some (r, M0)
    end.


254 255 256 257
(**
  Define a perturbation function to ease writing of basic definitions
**)
Definition perturb (r:R) (e:R) :=
258
  (r * (1 + e))%R.
Heiko Becker's avatar
Heiko Becker committed
259

260
(**
261
Define expression evaluation relation parametric by an "error" epsilon.
262 263 264
The result value expresses float computations according to the IEEE standard,
using a perturbation of the real valued computation by (1 + delta), where
|delta| <= machine epsilon.
265
**)
266
Inductive eval_exp (E:env) :(exp R) -> R -> mType -> Prop :=
267 268
| Var_load m x v:
    (** isMorePrecise m m1 = true ->**)
269
    (**mTypeEqBool m m1 = true ->*)
270
    E x = Some (v, m) ->
271
    eval_exp E (Var R m x) v m
272 273
| Const_dist m n delta:
    Rle (Rabs delta) (Q2R (meps m)) ->
274
    eval_exp E (Const m n) (perturb n delta) m
275 276 277 278 279 280 281
| Unop_neg m f1 v1:
    eval_exp E f1 v1 m ->
    eval_exp E (Unop Neg f1) (evalUnop Neg v1) m
| Unop_inv m f1 v1 delta:
    Rle (Rabs delta) (Q2R (meps m)) ->
    eval_exp E f1 v1 m ->
    eval_exp E (Unop Inv f1) (perturb (evalUnop Inv v1) delta) m
282 283 284
| Binop_dist m1 m2 op f1 f2 v1 v2 delta:
    (*isJoinOf m m1 m2 = true ->*)
    Rle (Rabs delta) (Q2R (meps (computeJoin m1 m2))) ->
285 286
    eval_exp E f1 v1 m1 ->
    eval_exp E f2 v2 m2 ->
287
    ((op = Div) -> (~ v2 = 0)%R) ->
288
    eval_exp E (Binop op f1 f2) (perturb (evalBinop op v1 v2) delta)  (computeJoin m1 m2)
289
| Downcast_dist m m1 f1 v1 delta:
290
    (* Downcast expression f1 (evaluating to machine type m1), to a machine type m, less precise than m1.*)
291 292 293 294
    isMorePrecise m1 m = true ->
    Rle (Rabs delta) (Q2R (meps m)) ->
    eval_exp E f1 v1 m1 ->
    eval_exp E (Downcast m f1) (perturb v1 delta) m.
295 296


297 298 299 300 301
(**
  Define the set of "used" variables of an expression to be the set of variables
  occuring in it
**)
Fixpoint usedVars (V:Type) (e:exp V) :NatSet.t :=
302
  match e with
303
  | Var _ _ x => NatSet.singleton x
304 305
  | Unop u e1 => usedVars e1
  | Binop b e1 e2 => NatSet.union (usedVars e1) (usedVars e2)
306
  | Downcast _ e1 => usedVars e1
307 308
  | _ => NatSet.empty
  end.
309

310
(**
311
  If |delta| <= 0 then perturb v delta is exactly v.
312
**)
313
Lemma delta_0_deterministic (v:R) (delta:R):
Heiko Becker's avatar
Heiko Becker committed
314 315 316 317 318
  (Rabs delta <= 0)%R ->
  perturb v delta = v.
Proof.
  intros abs_0; apply Rabs_0_impl_eq in abs_0; subst.
  unfold perturb.
319
  lra.
Heiko Becker's avatar
Heiko Becker committed
320 321
Qed.

322 323
    
Lemma general_meps_0_deterministic (f:exp R) (E:env):
324 325
  forall v1 v2 m1,
    m1 = M0 ->
326
    eval_exp E (toREval f) v1 m1 ->
327
    eval_exp E (toREval f) v2 M0 ->
328 329
    v1 = v2.
Proof.
330
  induction f; intros v1 v2 m1 m10_eq eval_v1 eval_v2.
331 332
  - inversion eval_v1; inversion eval_v2; subst; auto;
      try repeat (repeat rewrite delta_0_deterministic; simpl in *; rewrite Q2R0_is_0 in *; subst; auto); simpl.
333
    rewrite H7 in H3; inversion H3; subst; auto.
334 335 336 337
  - inversion eval_v1; inversion eval_v2; subst; auto;
      try repeat (repeat rewrite delta_0_deterministic; simpl in *; rewrite Q2R0_is_0 in *; subst; auto); simpl.
  - inversion eval_v1; inversion eval_v2; subst; auto;
      try repeat (repeat rewrite delta_0_deterministic; simpl in *; rewrite Q2R0_is_0 in *; subst; auto); simpl.
338
    + apply Ropp_eq_compat. apply (IHf v0 v3 M0); auto.     
339 340
    + inversion H4.
    + inversion H5.
341
    + rewrite (IHf v0 v3 M0); auto.
342 343
  - inversion eval_v1; inversion eval_v2; subst; auto;
      try repeat (repeat rewrite delta_0_deterministic; simpl in *; rewrite Q2R0_is_0 in *; subst; auto); simpl.
344 345
    destruct m0; destruct m2; inversion H5.
    destruct m3; destruct m4; inversion H11.
346
    simpl in *.
347 348
    rewrite (IHf1 v0 v4 M0); auto.
    rewrite (IHf2 v5 v3 M0); auto.
349 350 351
    rewrite Q2R0_is_0 in H2,H12.
    rewrite delta_0_deterministic; auto.
    rewrite delta_0_deterministic; auto.
352 353
  - simpl toREval in eval_v1.
    simpl toREval in eval_v2.
354
    apply (IHf v1 v2 m1); auto.
355 356
Qed.

357 358 359 360 361 362 363 364
(* Lemma rnd_0_deterministic f E m v: *)
(*   eval_exp E (toREval (Downcast m f)) v M0 <-> *)
(*   eval_exp E (toREval f) v M0. *)
(* Proof. *)
(*   split; intros. *)
(*   - simpl in H. auto. *)
(*   - simpl; auto. *)
(* Qed. *)
365 366

  
367
(**
368
Evaluation with 0 as machine epsilon is deterministic
369
**)
370
Lemma meps_0_deterministic (f:exp R) (E:env):
371
  forall v1 v2,
372 373
  eval_exp E (toREval f) v1 M0 ->
  eval_exp E (toREval f) v2 M0 ->
374 375
  v1 = v2.
Proof.
376
  intros v1 v2 ev1 ev2.
377 378
  assert (M0 = M0) by auto.
  apply (general_meps_0_deterministic f H ev1 ev2). 
379 380
Qed.

381

382 383 384 385
(**
Helping lemma. Needed in soundness proof.
For each evaluation of using an arbitrary epsilon, we can replace it by
evaluating the subexpressions and then binding the result values to different
386
variables in the Environment.
387
**)
388 389 390
Lemma binary_unfolding b f1 f2 m E vF:
  eval_exp E (Binop b f1 f2) vF m ->
  exists vF1 vF2 m1 m2,
391 392 393 394 395
    m = computeJoin m1 m2 /\
    eval_exp E f1 vF1 m1 /\
    eval_exp E f2 vF2 m2 /\
    eval_exp  (updEnv 2 m2 vF2 (updEnv 1 m1 vF1 emptyEnv))
              (Binop b (Var R m1 1) (Var R m2 2)) vF m.
396
Proof.
397 398
  intros eval_float.
  inversion eval_float; subst.
399 400 401 402 403 404 405 406
  exists v1 ; exists v2; exists m1; exists m2; repeat split; try auto.
  eapply Binop_dist; eauto.
  pose proof (isMorePrecise_refl m1).
  eapply Var_load; eauto.
  pose proof (isMorePrecise_refl m2).
  (* unfold mTypeEqBool; apply Qeq_bool_iff; apply Qeq_refl. *)
  eapply Var_load; eauto.
  (* unfold mTypeEqBool; apply Qeq_bool_iff; apply Qeq_refl. *)
407 408
Qed.

409 410 411 412 413 414 415 416
(* (** *)
(* Analogous lemma for unary expressions. *)
(* **) *)
Lemma unary_unfolding (e:exp R) (m:mType) (E:env) (v:R):
  (eval_exp E (Unop Inv e) v m ->
   exists v1 m1,
     eval_exp E e v1 m1 /\
     eval_exp (updEnv 1 m1 v1 E) (Unop Inv (Var R m1 1)) v m).
417
Proof.
418
  intros eval_un.
419
    inversion eval_un; subst.
420
    exists v1; exists m.
421
    repeat split; try auto.
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
    econstructor; try auto.
    pose proof (isMorePrecise_refl m).
    econstructor; eauto.
  (* - intros exists_val. *)
  (*   destruct exists_val as [v1 [m1 [eval_f1 eval_e_E]]]. *)
  (*   inversion eval_e_E; subst. *)
  (*   inversion H1; subst. *)
  (*   econstructor; eauto. *)
  (*   unfold updEnv in H6. *)
  (*   simpl in H6. *)
  (*   inversion H6. *)
  (*   rewrite <- H2. *)
    
  (*   rewrite <- H1. *)
  (*   auto. *)
437
Qed.
438

439 440 441 442 443 444
(**
  Using the parametric expressions, define boolean expressions for conditionals
**)
Inductive bexp (V:Type) : Type :=
  leq: exp V -> exp V -> bexp V
| less: exp V -> exp V -> bexp V.
445

446
(**
447
  Define evaluation of boolean expressions
448
 **)
449 450 451 452 453 454 455 456 457 458 459 460 461 462
(* Inductive bval (E:env): (bexp R) -> Prop -> Prop := *)
(*   leq_eval (f1:exp R) (f2:exp R) (v1:R) (v2:R): *)
(*     eval_exp E f1 v1 -> *)
(*     eval_exp E f2 v2 -> *)
(*     bval E (leq f1 f2) (Rle v1 v2) *)
(* |less_eval (f1:exp R) (f2:exp R) (v1:R) (v2:R): *)
(*     eval_exp E f1 v1 -> *)
(*     eval_exp E f2 v2 -> *)
(*     bval E (less f1 f2) (Rlt v1 v2). *)
(* (** *)
(*  Simplify arithmetic later by making > >= only abbreviations *)
(* **) *)
(* Definition gr := fun (V:Type) (f1: exp V) (f2: exp V) => less f2 f1. *)
(* Definition greq := fun (V:Type) (f1:exp V) (f2: exp V) => leq f2 f1. *)