Expressions.v 6.84 KB
Newer Older
1 2
(**
Formalization of the base expression language for the daisy framework
3
Required in all files, since we will always reason about expressions.
4
 **)
5
Require Import Coq.Reals.Reals Coq.micromega.Psatz Coq.QArith.QArith Coq.QArith.Qreals.
6 7
Require Export Daisy.Infra.Abbrevs Daisy.Infra.RealSimps Daisy.Infra.NatSet Daisy.IntervalArithQ Daisy.IntervalArith.

8 9 10 11 12
(**
  Expressions will use binary operators.
  Define them first
**)
Inductive binop : Type := Plus | Sub | Mult | Div.
13

14
Definition binopEqBool (b1:binop) (b2:binop) :=
15 16 17 18 19 20 21
  match b1 with
    Plus => match b2 with Plus => true |_ => false end
  | Sub => match b2 with Sub => true |_ => false end
  | Mult => match b2 with Mult => true |_ => false end
  | Div => match b2 with Div => true |_ => false end
  end.

22 23 24 25
(**
  Next define an evaluation function for binary operators on reals.
  Errors are added on the expression evaluation level later.
 **)
26
Definition evalBinop (o:binop) (v1:R) (v2:R) :=
27 28 29 30 31 32
  match o with
  | Plus => Rplus v1 v2
  | Sub => Rminus v1 v2
  | Mult => Rmult v1 v2
  | Div => Rdiv v1 v2
  end.
33 34 35 36 37 38 39

(**
   Expressions will use unary operators.
   Define them first
 **)
Inductive unop: Type := Neg | Inv.

40
Definition unopEqBool (o1:unop) (o2:unop) :=
41 42 43 44 45 46 47
  match o1 with
  |Neg => match o2 with |Neg => true |_=> false end
  |Inv => match o2 with |Inv => true |_ => false end
  end.

(**
   Define evaluation for unary operators on reals.
48
   Errors are added in the expression evaluation level later.
49
 **)
50
Definition evalUnop (o:unop) (v:R):=
51 52 53 54 55
  match o with
  |Neg => (- v)%R
  |Inv => (/ v)%R
  end .

56
(**
57 58
  Define expressions parametric over some value type V.
  Will ease reasoning about different instantiations later.
59
**)
60 61 62
Inductive exp (V:Type): Type :=
  Var: nat -> exp V
| Const: V -> exp V
63
| Unop: unop -> exp V -> exp V
64
| Binop: binop -> exp V -> exp V -> exp V.
65

66 67 68 69
(**
  Boolean equality function on expressions.
  Used in certificates to define the analysis result as function
**)
70
Fixpoint expEqBool (e1:exp Q) (e2:exp Q) :=
71 72 73 74 75 76 77 78 79 80 81
  match e1 with
  |Var _ v1 =>
   match e2 with
   |Var _ v2 => v1 =? v2
   | _=> false
   end
  |Const n1 =>
   match e2 with
   |Const n2 => Qeq_bool n1 n2
   | _=> false
   end
82 83
  |Unop o1 e11 =>
   match e2 with
84
   |Unop o2 e22 => andb (unopEqBool o1 o2) (expEqBool e11 e22)
85 86 87
   |_ => false
   end
  |Binop o1 e11 e12 =>
88
   match e2 with
89
   |Binop o2 e21 e22 => andb (binopEqBool o1 o2) (andb (expEqBool e11 e21) (expEqBool e12 e22))
90 91 92
   |_ => false
   end
  end.
93

94 95 96 97
(**
  Define a perturbation function to ease writing of basic definitions
**)
Definition perturb (r:R) (e:R) :=
98
  (r * (1 + e))%R.
Heiko Becker's avatar
Heiko Becker committed
99

100
(**
101 102 103 104 105 106
Define expression evaluation relation parametric by an "error" epsilon.
This value will be used later to express float computations using a perturbation
of the real valued computation by (1 + delta), where |delta| <= machine epsilon.

It is important that variables are not perturbed when loading from an environment.
This is the case, since loading a float value should not increase an additional error.
107
Unary negation is special! We do not have a new error here since IEE 754 gives us a sign bit
108
**)
109 110
Inductive eval_exp (eps:R) (E:env) :(exp R) -> R -> Prop :=
| Var_load x v:
111
    E x = Some v ->
112
    eval_exp eps E (Var R x) v
113 114
| Const_dist n delta:
    Rle (Rabs delta) eps ->
115
    eval_exp eps E (Const n) (perturb n delta)
116
| Unop_neg f1 v1:
117 118
    eval_exp eps E f1 v1 ->
    eval_exp eps E (Unop Neg f1) (evalUnop Neg v1)
119
| Unop_inv f1 v1 delta:
120
    Rle (Rabs delta) eps ->
121 122
    eval_exp eps E f1 v1 ->
    eval_exp eps E (Unop Inv f1) (perturb (evalUnop Inv v1) delta)
123 124
| Binop_dist op f1 f2 v1 v2 delta:
    Rle (Rabs delta) eps ->
125 126 127
    eval_exp eps E f1 v1 ->
    eval_exp eps E f2 v2 ->
    eval_exp eps E (Binop op f1 f2) (perturb (evalBinop op v1 v2) delta).
128 129 130 131 132 133 134 135

Fixpoint freeVars (V:Type) (e:exp V) :NatSet.t :=
  match e with
  | Var _ x => NatSet.singleton x
  | Unop u e1 => freeVars e1
  | Binop b e1 e2 => NatSet.union (freeVars e1) (freeVars e2)
  | _ => NatSet.empty
  end.
136

137
(**
138
If |delta| <= 0 then perturb v delta is exactly v.
139
**)
140
Lemma delta_0_deterministic (v:R) (delta:R):
Heiko Becker's avatar
Heiko Becker committed
141 142 143 144 145
  (Rabs delta <= 0)%R ->
  perturb v delta = v.
Proof.
  intros abs_0; apply Rabs_0_impl_eq in abs_0; subst.
  unfold perturb.
146
  lra.
Heiko Becker's avatar
Heiko Becker committed
147 148
Qed.

149
(**
150
Evaluation with 0 as machine epsilon is deterministic
151
**)
152
Lemma meps_0_deterministic (f:exp R) (E:env):
153
  forall v1 v2,
154 155
  eval_exp 0 E f v1 ->
  eval_exp 0 E f v2 ->
156 157
  v1 = v2.
Proof.
158 159
  induction f; intros v1 v2 eval_v1 eval_v2;
    inversion eval_v1; inversion eval_v2;
160
      repeat try rewrite delta_0_deterministic; subst; auto.
161
  - rewrite H3 in H0; inversion H0;
162
      subst; auto.
163
  - rewrite (IHf v0 v3); auto.
164 165
  - inversion H3.
  - inversion H4.
166 167 168
  - rewrite (IHf v0 v3); auto.
  - rewrite (IHf1 v0 v4); auto.
    rewrite (IHf2 v3 v5); auto.
169 170
Qed.

171 172 173 174
(**
Helping lemma. Needed in soundness proof.
For each evaluation of using an arbitrary epsilon, we can replace it by
evaluating the subexpressions and then binding the result values to different
175
variables in the Eironment.
176
This relies on the property that variables are not perturbed as opposed to parameters
177
**)
178 179 180 181 182
Lemma binary_unfolding b f1 f2 eps E vF:
  eval_exp eps E (Binop b f1 f2) vF ->
  exists vF1 vF2,
  eval_exp eps E f1 vF1 /\
  eval_exp eps E f2 vF2 /\
183
  eval_exp eps (updEnv 2 vF2 (updEnv 1 vF1 emptyEnv))
184
           (Binop b (Var R 1) (Var R 2)) vF.
185
Proof.
186 187 188 189 190 191 192 193
  intros eval_float.
  inversion eval_float; subst.
  exists v1 ; exists v2; repeat split; try auto.
  constructor; try auto.
  - constructor.
    unfold updEnv; cbv; auto.
  - constructor.
    unfold updEnv; cbv; auto.
194 195
Qed.

196 197 198
(**
Analogous lemma for unary expressions.
**)
199 200
Lemma unary_unfolding (e:exp R) (eps:R) (E:env) (v:R):
  (eval_exp eps E (Unop Inv e) v <->
201
   exists v1,
202 203
     eval_exp eps E e v1 /\
     eval_exp eps (updEnv 1 v1 E) (Unop Inv (Var R 1)) v).
204 205 206 207 208 209 210 211 212
Proof.
  split.
  - intros eval_un.
    inversion eval_un; subst.
    exists v1.
    repeat split; try auto.
    constructor; try auto.
    constructor; auto.
  - intros exists_val.
213 214
    destruct exists_val as [v1 [eval_f1 eval_e_E]].
    inversion eval_e_E; subst.
215 216 217
    inversion H1; subst.
    unfold updEnv in *; simpl in *.
    constructor; auto.
218
    inversion H2; subst; auto.
219
Qed.
220

221

222 223 224 225 226 227 228 229
(**
  Using the parametric expressions, define boolean expressions for conditionals
**)
Inductive bexp (V:Type) : Type :=
  leq: exp V -> exp V -> bexp V
| less: exp V -> exp V -> bexp V.
(**
  Define evaluation of booleans for reals
230
 **)
231
Inductive bval (eps:R) (E:env): (bexp R) -> Prop -> Prop :=
232
  leq_eval (f1:exp R) (f2:exp R) (v1:R) (v2:R):
233 234 235
    eval_exp eps E f1 v1 ->
    eval_exp eps E f2 v2 ->
    bval eps E (leq f1 f2) (Rle v1 v2)
236
|less_eval (f1:exp R) (f2:exp R) (v1:R) (v2:R):
237 238 239
    eval_exp eps E f1 v1 ->
    eval_exp eps E f2 v2 ->
    bval eps E (less f1 f2) (Rlt v1 v2).
240 241 242
(**
 Simplify arithmetic later by making > >= only abbreviations
**)
243 244
Definition gr := fun (V:Type) (f1: exp V) (f2: exp V) => less f2 f1.
Definition greq := fun (V:Type) (f1:exp V) (f2: exp V) => leq f2 f1.