IntervalValidation.v 19.9 KB
Newer Older
Heiko Becker's avatar
Heiko Becker committed
1
(**
Heiko Becker's avatar
Heiko Becker committed
2
3
4
5
6
    Interval arithmetic checker and its soundness proof.
    The function validIntervalbounds checks wether the given analysis result is
    a valid range arithmetic for each sub term of the given expression e.
    The computation is done using our formalized interval arithmetic.
    The function is used in CertificateChecker.v to build the full checker.
Heiko Becker's avatar
Heiko Becker committed
7
**)
8
Require Import Coq.QArith.QArith Coq.QArith.Qreals QArith.Qminmax Coq.Lists.List Coq.micromega.Psatz.
9
Require Import Daisy.Infra.Abbrevs Daisy.Infra.RationalSimps Daisy.Infra.RealRationalProps.
Heiko Becker's avatar
Heiko Becker committed
10
Require Import Daisy.Infra.ExpressionAbbrevs Daisy.IntervalArithQ Daisy.IntervalArith Daisy.Infra.RealSimps.
11

Heiko Becker's avatar
Heiko Becker committed
12
13
Import Lists.List.ListNotations.

Heiko Becker's avatar
Heiko Becker committed
14
15
Fixpoint freeVars (V:Type) (f:exp V) : list nat:=
  match f with
Heiko Becker's avatar
Heiko Becker committed
16
  |Const n => []
17
18
  |Var _ v => []
  |Param _ v => [v]
Heiko Becker's avatar
Heiko Becker committed
19
20
  |Unop o f1 => freeVars V f1
  |Binop o f1 f2 => (freeVars V f1) ++ (freeVars V f2)
Heiko Becker's avatar
Heiko Becker committed
21
22
  end.

23
24
25
Fixpoint validIntervalbounds (e:exp Q) (absenv:analysisResult) (P:precond):=
  let (intv, _) := absenv e in
    match e with
26
27
    | Var _ v => false
    | Param _ v =>
28
      isSupersetIntv (P v) intv
29
    | Const n =>
30
      isSupersetIntv (n,n) intv
31
    | Unop o f1 =>
Heiko Becker's avatar
Heiko Becker committed
32
33
    let rec := validIntervalbounds f1 absenv P in
    let (iv1, _) := absenv f1 in
34
    let opres :=
Heiko Becker's avatar
Heiko Becker committed
35
        match o with
36
37
38
39
40
41
42
43
44
        | Neg =>
          let new_iv := negateIntv iv1 in
          isSupersetIntv new_iv intv
        | Inv =>
          let nodiv0 := orb
                          (andb (Qleb (ivhi iv1) 0) (negb (Qeq_bool (ivhi iv1) 0)))
                          (andb (Qleb 0 (ivlo iv1)) (negb (Qeq_bool (ivlo iv1) 0))) in
          let new_iv := invertIntv iv1 in
          andb (isSupersetIntv new_iv intv) nodiv0
Heiko Becker's avatar
Heiko Becker committed
45
46
        end
    in
47
    andb rec opres
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
    | Binop b e1 e2 =>
      let rec := andb (validIntervalbounds e1 absenv P) (validIntervalbounds e2 absenv P) in
      let (iv1,_) := absenv e1 in
      let (iv2,_) := absenv e2 in
      let opres :=
          match b with
          | Plus =>
            let new_iv := addIntv iv1 iv2 in
            isSupersetIntv new_iv intv
          | Sub =>
            let new_iv := subtractIntv iv1 iv2 in
            isSupersetIntv new_iv intv
          | Mult =>
            let new_iv := multIntv iv1 iv2 in
            isSupersetIntv new_iv intv
Heiko Becker's avatar
Heiko Becker committed
63
          | Div =>
64
65
66
            let nodiv0 := orb
                            (andb (Qleb (ivhi iv2) 0) (negb (Qeq_bool (ivhi iv2) 0)))
                            (andb (Qleb 0 (ivlo iv2)) (negb (Qeq_bool (ivlo iv2) 0))) in
Heiko Becker's avatar
Heiko Becker committed
67
            let new_iv := divideIntv iv1 iv2 in
68
            andb (isSupersetIntv new_iv intv) nodiv0
69
70
71
72
73
          end
      in
      andb rec opres
    end.

Heiko Becker's avatar
Heiko Becker committed
74
75
76
Theorem ivbounds_approximatesPrecond_sound f absenv P:
  validIntervalbounds f absenv P = true ->
  forall v, In v (freeVars Q f) ->
77
78
       Is_true(isSupersetIntv (P v) (fst (absenv (Param Q v)))).
Proof.
Heiko Becker's avatar
Heiko Becker committed
79
  induction f; unfold validIntervalbounds.
80
81
82
83
84
85
86
87
88
  - intros approx_true v v_in_fV; simpl in *; contradiction.
  - intros approx_true v v_in_fV; simpl in *.
    unfold isSupersetIntv.
    destruct v_in_fV; try contradiction.
    subst.
    destruct (P v); destruct (absenv (Param Q v)); simpl in *.
    destruct i; simpl in *.
    apply Is_true_eq_left in approx_true; auto.
  - intros approx_true v0 v_in_fV; simpl in *; contradiction.
Heiko Becker's avatar
Heiko Becker committed
89
90
91
92
93
94
95
96
  - intros approx_unary_true v v_in_fV.
    unfold freeVars in v_in_fV.
    apply Is_true_eq_left in approx_unary_true.
    destruct (absenv (Unop u f)); destruct (absenv f); simpl in *.
    apply andb_prop_elim in approx_unary_true.
    destruct approx_unary_true.
    apply IHf; try auto.
    apply Is_true_eq_true; auto.
97
98
99
100
  - intros approx_bin_true v v_in_fV.
    unfold freeVars in v_in_fV.
    apply in_app_or in v_in_fV.
    apply Is_true_eq_left in approx_bin_true.
Heiko Becker's avatar
Heiko Becker committed
101
    destruct (absenv (Binop b f1 f2)); destruct (absenv f1); destruct (absenv f2); simpl in *.
102
103
104
105
    apply andb_prop_elim in approx_bin_true.
    destruct approx_bin_true.
    apply andb_prop_elim in H.
    destruct H.
Heiko Becker's avatar
Heiko Becker committed
106
107
    destruct v_in_fV as [v_in_fV_f1 | v_in_fV_f2].
    + apply IHf1; auto.
108
      apply Is_true_eq_true; auto.
Heiko Becker's avatar
Heiko Becker committed
109
    + apply IHf2; auto.
110
111
112
      apply Is_true_eq_true; auto.
Qed.

Heiko Becker's avatar
Heiko Becker committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
Corollary Q2R_max4 a b c d:
  Q2R (IntervalArithQ.max4 a b c d) = max4 (Q2R a) (Q2R b) (Q2R c) (Q2R d).
Proof.
  unfold IntervalArithQ.max4, max4; repeat rewrite Q2R_max; auto.
Qed.

Corollary Q2R_min4 a b c d:
  Q2R (IntervalArithQ.min4 a b c d) = min4 (Q2R a) (Q2R b) (Q2R c) (Q2R d).
Proof.
  unfold IntervalArith.min4, min4; repeat rewrite Q2R_min; auto.
Qed.

Ltac env_assert absenv e name :=
  assert (exists iv err, absenv e = (iv,err)) as name by (destruct (absenv e); repeat eexists; auto).

128
129
130
131
132
133
134
135
136
137
138
139
140
141
Lemma validBoundsDiv_uneq_zero e1 e2 absenv P ivlo_e2 ivhi_e2 err:
  absenv e2 = ((ivlo_e2,ivhi_e2), err) ->
  validIntervalbounds (Binop Div e1 e2) absenv P = true ->
  (ivhi_e2 < 0) \/ (0 < ivlo_e2).
Proof.
  intros absenv_eq validBounds.
  unfold validIntervalbounds in validBounds.
  env_assert absenv (Binop Div e1 e2) abs_div; destruct abs_div as [iv_div [err_div abs_div]].
  env_assert absenv e1 abs_e1; destruct abs_e1 as [iv_e1 [err_e1 abs_e1]].
  rewrite abs_div, abs_e1, absenv_eq in validBounds.
  apply Is_true_eq_left in validBounds.
  apply andb_prop_elim in validBounds.
  destruct validBounds as [_ validBounds]; apply andb_prop_elim in validBounds.
  destruct validBounds as [_ nodiv0].
142
143
  apply Is_true_eq_true in nodiv0.
  apply le_neq_bool_to_lt_prop; auto.
144
145
Qed.

Heiko Becker's avatar
Heiko Becker committed
146
147
148
149
150
151
Theorem validIntervalbounds_sound (f:exp Q) (absenv:analysisResult) (P:precond) cenv:
  forall vR,
  precondValidForExec P cenv ->
  validIntervalbounds f absenv P = true ->
  eval_exp 0%R cenv (toRExp f) vR ->
  (Q2R (fst (fst(absenv f))) <= vR <= Q2R (snd (fst (absenv f))))%R.
152
Proof.
Heiko Becker's avatar
Heiko Becker committed
153
154
  induction f.
  - intros vR precond_valid valid_bounds eval_f.
155
    pose proof (ivbounds_approximatesPrecond_sound (Var Q n) absenv P valid_bounds) as env_approx_p.
156
    unfold validIntervalbounds in valid_bounds.
Heiko Becker's avatar
Heiko Becker committed
157
    destruct (absenv (Var Q n)); inversion valid_bounds.
Heiko Becker's avatar
Heiko Becker committed
158
  - intros vR precond_valid valid_bounds eval_f.
159
    pose proof (ivbounds_approximatesPrecond_sound (Param Q n) absenv P valid_bounds) as env_approx_p.
160
    unfold validIntervalbounds in valid_bounds.
Heiko Becker's avatar
Heiko Becker committed
161
162
    case_eq (absenv (Param Q n)).
    intros intv err absenv_n.
Heiko Becker's avatar
Heiko Becker committed
163
164
165
    rewrite absenv_n in valid_bounds.
    unfold precondValidForExec in precond_valid.
    specialize (env_approx_p n).
Heiko Becker's avatar
Heiko Becker committed
166
    case_eq (P n); intros ivlo ivhi p_n.
167
    unfold isSupersetIntv, freeVars in env_approx_p.
Heiko Becker's avatar
Heiko Becker committed
168
169
    assert (In n (n::nil)) as n_in_n by (unfold In; auto).
    specialize (env_approx_p n_in_n).
Heiko Becker's avatar
Heiko Becker committed
170
171
    rewrite p_n, absenv_n in env_approx_p.
    specialize (precond_valid n); rewrite p_n in precond_valid.
Heiko Becker's avatar
Heiko Becker committed
172
    inversion eval_f; subst.
Heiko Becker's avatar
Heiko Becker committed
173
174
    rewrite perturb_0_val; auto.
    destruct intv as [abslo abshi]; simpl in *.
175
    apply andb_prop_elim in env_approx_p.
Heiko Becker's avatar
Heiko Becker committed
176
177
    destruct env_approx_p as [abslo_le_ivlo ivhi_le_abshi].
    destruct precond_valid as [ivlo_le_env env_le_ivhi].
178
179
180
    apply Is_true_eq_true in abslo_le_ivlo; apply Is_true_eq_true in ivhi_le_abshi.
    unfold Qleb in abslo_le_ivlo, ivhi_le_abshi.
    apply Qle_bool_iff in abslo_le_ivlo; apply Qle_bool_iff in ivhi_le_abshi.
Heiko Becker's avatar
Heiko Becker committed
181
182
183
184
185
186
187
188
    apply Qle_Rle in abslo_le_ivlo; apply Qle_Rle in ivhi_le_abshi.
    split.
    + eapply Rle_trans.
      apply abslo_le_ivlo.
      apply ivlo_le_env.
    + eapply Rle_trans.
      apply env_le_ivhi.
      apply ivhi_le_abshi.
Heiko Becker's avatar
Heiko Becker committed
189
  - intros vR valid_precond valid_bounds eval_f.
190
    pose proof (ivbounds_approximatesPrecond_sound (Const v) absenv P valid_bounds) as env_approx_p.
191
    unfold validIntervalbounds in valid_bounds.
Heiko Becker's avatar
Heiko Becker committed
192
    destruct (absenv (Const v)) as [intv err]; simpl.
193
194
    apply Is_true_eq_left in valid_bounds.
    apply andb_prop_elim in valid_bounds.
Heiko Becker's avatar
Heiko Becker committed
195
    destruct valid_bounds as [valid_lo valid_hi].
Heiko Becker's avatar
Heiko Becker committed
196
    inversion eval_f; subst.
Heiko Becker's avatar
Heiko Becker committed
197
    rewrite perturb_0_val; auto.
198
199
    unfold contained; simpl.
    split.
Heiko Becker's avatar
Heiko Becker committed
200
    + apply Is_true_eq_true in valid_lo.
201
      unfold Qleb in *.
Heiko Becker's avatar
Heiko Becker committed
202
203
204
205
206
207
      apply Qle_bool_iff in valid_lo.
      apply Qle_Rle in valid_lo; auto.
    + apply Is_true_eq_true in valid_hi.
      unfold Qleb in *.
      apply Qle_bool_iff in valid_hi.
      apply Qle_Rle in valid_hi; auto.
Heiko Becker's avatar
Heiko Becker committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
  - intros vR valid_precond valid_bounds eval_f;
      pose proof (ivbounds_approximatesPrecond_sound (Unop u f) absenv P valid_bounds) as env_approx_p.
    case_eq (absenv (Unop u f)); intros intv err absenv_unop.
    destruct intv as [unop_lo unop_hi]; simpl.
    unfold validIntervalbounds in valid_bounds.
    rewrite absenv_unop in valid_bounds.
    case_eq (absenv f); intros intv_f err_f absenv_f.
    rewrite absenv_f in valid_bounds.
    apply Is_true_eq_left in valid_bounds.
    apply andb_prop_elim in valid_bounds.
    destruct valid_bounds as [valid_rec valid_unop].
    apply Is_true_eq_true in valid_rec.
    inversion eval_f; subst.
    + specialize (IHf v1 valid_precond valid_rec H2).
      rewrite absenv_f in IHf; simpl in IHf.
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
      (* TODO: Make lemma *)
      unfold isSupersetIntv in valid_unop.
      apply andb_prop_elim in valid_unop.
      destruct valid_unop as [valid_lo valid_hi].
      apply Is_true_eq_true in valid_lo; apply Is_true_eq_true in valid_hi.
      apply Qle_bool_iff in valid_lo; apply Qle_bool_iff in valid_hi.
      pose proof (interval_negation_valid (Q2R (fst intv_f),(Q2R (snd intv_f))) v1) as negation_valid.
      unfold contained, negateInterval in negation_valid; simpl in *.
      apply Qle_Rle in valid_lo; apply Qle_Rle in valid_hi.
      destruct IHf.
      unfold eval_unop; split.
      * eapply Rle_trans. apply valid_lo.
        rewrite Q2R_opp; lra.
      * eapply Rle_trans.
        Focus 2. apply valid_hi.
        rewrite Q2R_opp; lra.
Heiko Becker's avatar
Heiko Becker committed
239
240
    + specialize (IHf v1 valid_precond valid_rec H3).
      rewrite absenv_f in IHf; simpl in IHf.
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
      apply andb_prop_elim in valid_unop.
      destruct valid_unop as [valid_unop nodiv0].
      (* TODO: Make lemma *)
      unfold isSupersetIntv in valid_unop.
      apply andb_prop_elim in valid_unop.
      destruct valid_unop as [valid_lo valid_hi].
      apply Is_true_eq_true in valid_lo; apply Is_true_eq_true in valid_hi.
      apply Qle_bool_iff in valid_lo; apply Qle_bool_iff in valid_hi.
      assert ((Q2R (ivhi intv_f) < 0)%R \/ (0 < Q2R (ivlo intv_f))%R) as nodiv0_prop.
       * apply Is_true_eq_true in nodiv0.
         apply le_neq_bool_to_lt_prop in nodiv0.
         destruct nodiv0.
         { left; rewrite <- Q2R0_is_0; apply Qlt_Rlt; auto. }
         { right; rewrite <- Q2R0_is_0; apply Qlt_Rlt; auto. }
       * pose proof (interval_inversion_valid (Q2R (fst intv_f),(Q2R (snd intv_f))) v1) as inv_valid.
         unfold contained, invertInterval in inv_valid; simpl in *.
         apply Qle_Rle in valid_lo; apply Qle_Rle in valid_hi.
         destruct IHf.
         rewrite perturb_0_val; auto.
         unfold eval_unop, perturb; split.
         { eapply Rle_trans. apply valid_lo.
           destruct nodiv0_prop as [nodiv0_neg | nodiv0_pos].
           (* TODO: Extract lemma maybe *)
           - assert (0 < - (Q2R (snd intv_f)))%R as negation_pos by lra.
             assert (- (Q2R (snd intv_f)) <= - v1)%R as negation_flipped_hi by lra.
             apply Rinv_le_contravar in negation_flipped_hi; try auto.
             rewrite <- Ropp_inv_permute in negation_flipped_hi; try lra.
             rewrite <- Ropp_inv_permute in negation_flipped_hi; try lra.
             apply Ropp_le_contravar in negation_flipped_hi.
             repeat rewrite Ropp_involutive in negation_flipped_hi;
               rewrite Q2R_inv; auto.
             hnf; intros is_0.
             rewrite <- Q2R0_is_0 in nodiv0_neg.
             apply Rlt_Qlt in nodiv0_neg; lra.
           - rewrite Q2R_inv.
             apply Rinv_le_contravar; try lra.
             hnf; intros is_0.
             assert (Q2R (fst intv_f) <= Q2R (snd intv_f))%R by lra.
             rewrite <- Q2R0_is_0 in nodiv0_pos.
             apply Rlt_Qlt in nodiv0_pos; apply Rle_Qle in H2; lra.
         }
         { eapply Rle_trans.
           Focus 2. apply valid_hi.
           destruct nodiv0_prop as [nodiv0_neg | nodiv0_pos].
           - assert (Q2R (fst intv_f) < 0)%R as fst_lt_0 by lra.
             assert (0 < - (Q2R (fst intv_f)))%R as negation_pos by lra.
             assert (- v1 <= - (Q2R (fst intv_f)))%R as negation_flipped_lo by lra.
             apply Rinv_le_contravar in negation_flipped_lo; try auto.
             rewrite <- Ropp_inv_permute in negation_flipped_lo; try lra.
             rewrite <- Ropp_inv_permute in negation_flipped_lo; try lra.
             apply Ropp_le_contravar in negation_flipped_lo.
             repeat rewrite Ropp_involutive in negation_flipped_lo;
               rewrite Q2R_inv; auto.
             hnf; intros is_0.
             rewrite <- Q2R0_is_0 in negation_pos.
             rewrite <- Q2R_opp in negation_pos.
             apply Rlt_Qlt in negation_pos; lra.
             assert (0 < - (Q2R (snd intv_f)))%R by lra.
             lra.
           - rewrite Q2R_inv.
             apply Rinv_le_contravar; try lra.
             hnf; intros is_0.
             assert (Q2R (fst intv_f) <= Q2R (snd intv_f))%R by lra.
             rewrite <- Q2R0_is_0 in nodiv0_pos.
             apply Rlt_Qlt in nodiv0_pos; apply Rle_Qle in H2; lra.
         }
Heiko Becker's avatar
Heiko Becker committed
307
308
309
  - intros vR valid_precond valid_bounds eval_f; inversion eval_f; subst.
    pose proof (ivbounds_approximatesPrecond_sound (Binop b f1 f2) absenv P valid_bounds) as env_approx_p.
    rewrite perturb_0_val in eval_f; auto.
Heiko Becker's avatar
Heiko Becker committed
310
311
    rewrite perturb_0_val; auto.
    simpl in valid_bounds.
Heiko Becker's avatar
Heiko Becker committed
312
313
314
315
    case_eq (absenv (Binop b f1 f2)); intros iv err absenv_bin.
    case_eq (absenv f1); intros iv1 err1 absenv_f1.
    case_eq (absenv f2); intros iv2 err2 absenv_f2.
    rewrite absenv_bin, absenv_f1, absenv_f2 in valid_bounds.
Heiko Becker's avatar
Heiko Becker committed
316
317
318
319
320
321
    apply Is_true_eq_left in valid_bounds.
    apply andb_prop_elim in valid_bounds.
    destruct valid_bounds as [valid_rec valid_bin].
    apply andb_prop_elim in valid_rec.
    destruct valid_rec as [valid_e1 valid_e2].
    apply Is_true_eq_true in valid_e1; apply Is_true_eq_true in  valid_e2.
Heiko Becker's avatar
Heiko Becker committed
322
323
324
325
    specialize (IHf1 v1 valid_precond valid_e1 H4);
      specialize (IHf2 v2 valid_precond valid_e2 H5).
    rewrite absenv_f1 in IHf1.
    rewrite absenv_f2 in IHf2.
326
327
328
    destruct b; simpl in *.
    + pose proof (additionIsValid (Q2R (fst iv1),Q2R (snd iv1)) (Q2R (fst iv2), Q2R (snd iv2))) as valid_add.
      unfold validIntervalAdd in valid_add.
Heiko Becker's avatar
Heiko Becker committed
329
      specialize (valid_add v1 v2 IHf1 IHf2).
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
      unfold contained in valid_add.
      unfold isSupersetIntv in valid_bin.
      apply andb_prop_elim in valid_bin; destruct valid_bin as [valid_lo valid_hi].
      apply Is_true_eq_true in valid_lo; apply Is_true_eq_true in valid_hi.
      apply Qle_bool_iff in valid_lo; apply Qle_bool_iff in valid_hi.
      apply Qle_Rle in valid_lo; apply Qle_Rle in valid_hi.
      destruct valid_add as [valid_add_lo valid_add_hi].
      split.
      { eapply Rle_trans. apply valid_lo.
        unfold ivlo. unfold addIntv.
        simpl in valid_add_lo.
        repeat rewrite <- Q2R_plus in valid_add_lo.
        rewrite <- Q2R_min4 in valid_add_lo.
        unfold absIvUpd; auto. }
      { eapply Rle_trans.
        Focus 2.
        apply valid_hi.
        unfold ivlo, addIntv.
        simpl in valid_add_hi.
        repeat rewrite <- Q2R_plus in valid_add_hi.
        rewrite <- Q2R_max4 in valid_add_hi.
        unfold absIvUpd; auto. }
Heiko Becker's avatar
Heiko Becker committed
352
    + pose proof (subtractionIsValid (Q2R (fst iv1),Q2R (snd iv1)) (Q2R (fst iv2), Q2R (snd iv2))) as valid_sub.
Heiko Becker's avatar
Heiko Becker committed
353
      specialize (valid_sub v1 v2 IHf1 IHf2).
Heiko Becker's avatar
Heiko Becker committed
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
      unfold contained in valid_sub.
      unfold isSupersetIntv in valid_bin.
      apply andb_prop_elim in valid_bin; destruct valid_bin as [valid_lo valid_hi].
      apply Is_true_eq_true in valid_lo; apply Is_true_eq_true in valid_hi.
      apply Qle_bool_iff in valid_lo; apply Qle_bool_iff in valid_hi.
      apply Qle_Rle in valid_lo; apply Qle_Rle in valid_hi.
      destruct valid_sub as [valid_sub_lo valid_sub_hi].
      split.
      * eapply Rle_trans. apply valid_lo.
        unfold ivlo. unfold subtractIntv.
        simpl in valid_sub_lo.
        repeat rewrite <- Rsub_eq_Ropp_Rplus in valid_sub_lo.
        repeat rewrite <- Q2R_minus in valid_sub_lo.
        rewrite <- Q2R_min4 in valid_sub_lo.
        unfold absIvUpd; auto.
      * eapply Rle_trans.
        Focus 2.
        apply valid_hi.
        unfold ivlo, addIntv.
        simpl in valid_sub_hi.
        repeat rewrite <- Rsub_eq_Ropp_Rplus in valid_sub_hi.
        repeat rewrite <- Q2R_minus in valid_sub_hi.
        rewrite <- Q2R_max4 in valid_sub_hi.
        unfold absIvUpd; auto.
    + pose proof (interval_multiplication_valid (Q2R (fst iv1),Q2R (snd iv1)) (Q2R (fst iv2), Q2R (snd iv2))) as valid_mul.
Heiko Becker's avatar
Heiko Becker committed
379
      specialize (valid_mul v1 v2 IHf1 IHf2).
Heiko Becker's avatar
Heiko Becker committed
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
      unfold contained in valid_mul.
      unfold isSupersetIntv in valid_bin.
      apply andb_prop_elim in valid_bin; destruct valid_bin as [valid_lo valid_hi].
      apply Is_true_eq_true in valid_lo; apply Is_true_eq_true in valid_hi.
      apply Qle_bool_iff in valid_lo; apply Qle_bool_iff in valid_hi.
      apply Qle_Rle in valid_lo; apply Qle_Rle in valid_hi.
      destruct valid_mul as [valid_mul_lo valid_mul_hi].
      split.
      * eapply Rle_trans. apply valid_lo.
        unfold ivlo. unfold multIntv.
        simpl in valid_mul_lo.
        repeat rewrite <- Q2R_mult in valid_mul_lo.
        rewrite <- Q2R_min4 in valid_mul_lo.
        unfold absIvUpd; auto.
      * eapply Rle_trans.
        Focus 2.
        apply valid_hi.
        unfold ivlo, addIntv.
        simpl in valid_mul_hi.
        repeat rewrite <- Q2R_mult in valid_mul_hi.
        rewrite <- Q2R_max4 in valid_mul_hi.
        unfold absIvUpd; auto.
402
403
404
    + pose proof (divisionIsValid v1 v2 (Q2R (fst iv1), Q2R (snd iv1)) (Q2R (fst iv2),Q2R (snd iv2))) as valid_div.
      unfold contained in valid_div.
      unfold isSupersetIntv in valid_bin.
405
      apply andb_prop_elim in valid_bin; destruct valid_bin as [valid_bin nodiv0].
406
407
408
409
      apply andb_prop_elim in valid_bin; destruct valid_bin as [valid_lo valid_hi].
      apply Is_true_eq_true in valid_lo; apply Is_true_eq_true in valid_hi.
      apply Qle_bool_iff in valid_lo; apply Qle_bool_iff in valid_hi.
      apply Qle_Rle in valid_lo; apply Qle_Rle in valid_hi.
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
      apply orb_prop_elim in nodiv0.
      assert (snd iv2 < 0 \/ 0 < fst iv2).
      * destruct nodiv0 as [lt_0 | lt_0];
          apply andb_prop_elim in lt_0; destruct lt_0 as [le_0 neq_0];
            apply Is_true_eq_true in le_0; apply Is_true_eq_true in neq_0;
              apply negb_true_iff in neq_0; apply Qeq_bool_neq in neq_0;
                rewrite Qle_bool_iff in le_0;
                rewrite Qle_lteq in le_0; destruct le_0 as [lt_0 | eq_0];
                  [ | exfalso; apply neq_0; auto | | exfalso; apply neq_0; symmetry; auto]; auto.
      * destruct valid_div as [valid_div_lo valid_div_hi]; simpl; try auto.
        { rewrite <- Q2R0_is_0.
          destruct H; [left | right]; apply Qlt_Rlt; auto. }
        { unfold divideInterval, IVlo, IVhi in valid_div_lo, valid_div_hi.
          simpl in *.
          assert (Q2R (fst iv2) <= (Q2R (snd iv2)))%R by lra.
          assert (~ snd iv2 == 0).
          - destruct H; try lra.
            hnf; intros ivhi2_0.
            apply Rle_Qle in H0.
            rewrite ivhi2_0 in H0.
            lra.
          - assert (~ fst iv2 == 0).
            + destruct H; try lra.
              hnf; intros ivlo2_0.
              apply Rle_Qle in H0.
              rewrite ivlo2_0 in H0.
              lra.
              + split.
                * eapply Rle_trans. apply valid_lo.
                  unfold ivlo. unfold multIntv.
                  simpl in valid_div_lo.
                  rewrite <- Q2R_inv in valid_div_lo; [ | auto].
                  rewrite <- Q2R_inv in valid_div_lo; [ | auto].
                  repeat rewrite <- Q2R_mult in valid_div_lo.
                  rewrite <- Q2R_min4 in valid_div_lo; auto.
                * eapply Rle_trans.
                  Focus 2.
                  apply valid_hi.
                  simpl in valid_div_hi.
                  rewrite <- Q2R_inv in valid_div_hi; [ | auto].
                  rewrite <- Q2R_inv in valid_div_hi; [ | auto].
                  repeat rewrite <- Q2R_mult in valid_div_hi.
                  rewrite <- Q2R_max4 in valid_div_hi; auto. }
453
Qed.