Expressions.v 7.28 KB
Newer Older
1
2
(**
Formalization of the base expression language for the daisy framework
3
Required in all files, since we will always reason about expressions.
4
 **)
5
Require Import Coq.Reals.Reals Coq.micromega.Psatz Coq.QArith.QArith.
6
Require Import Daisy.Infra.RealSimps Daisy.Infra.Abbrevs.
7
8
9
10
11
12
Set Implicit Arguments.
(**
  Expressions will use binary operators.
  Define them first
**)
Inductive binop : Type := Plus | Sub | Mult | Div.
13
14
15
16
17
18
19
20
21

Definition binop_eq_bool (b1:binop) (b2:binop) :=
  match b1 with
    Plus => match b2 with Plus => true |_ => false end
  | Sub => match b2 with Sub => true |_ => false end
  | Mult => match b2 with Mult => true |_ => false end
  | Div => match b2 with Div => true |_ => false end
  end.

22
23
24
25
(**
  Next define an evaluation function for binary operators on reals.
  Errors are added on the expression evaluation level later.
 **)
26
Definition eval_binop (o:binop) (v1:R) (v2:R) :=
27
28
29
30
31
32
  match o with
  | Plus => Rplus v1 v2
  | Sub => Rminus v1 v2
  | Mult => Rmult v1 v2
  | Div => Rdiv v1 v2
  end.
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

(**
   Expressions will use unary operators.
   Define them first
 **)
Inductive unop: Type := Neg | Inv.

Definition unop_eq_bool (o1:unop) (o2:unop) :=
  match o1 with
  |Neg => match o2 with |Neg => true |_=> false end
  |Inv => match o2 with |Inv => true |_ => false end
  end.

(**
   Define evaluation for unary operators on reals.
   Errors are added on the expression evaluation level later.
 **)
Definition eval_unop (o:unop) (v:R):=
  match o with
  |Neg => (- v)%R
  |Inv => (/ v)%R
  end .

56
(**
57
58
  Define expressions parametric over some value type V.
  Will ease reasoning about different instantiations later.
59
60
61
62
  Note that we differentiate between wether we use a variable from the environment or a parameter.
  Parameters do not have error bounds in the invariants, so they must be perturbed, but variables from the
  program will be perturbed upon binding, so we do not need to perturb them.
**)
63
64
Inductive exp (V:Type): Type :=
  Var: nat -> exp V
65
| Param: nat -> exp V
66
| Const: V -> exp V
67
| Unop: unop -> exp V -> exp V
68
| Binop: binop -> exp V -> exp V -> exp V.
69

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

Fixpoint exp_eq_bool (e1:exp Q) (e2:exp Q) :=
  match e1 with
  |Var _ v1 =>
   match e2 with
   |Var _ v2 => v1 =? v2
   | _=> false
   end
  |Param _ v1 =>
   match e2 with
   |Param _ v2 => v1 =? v2
   | _=> false
   end
  |Const n1 =>
   match e2 with
   |Const n2 => Qeq_bool n1 n2
   | _=> false
   end
88
89
90
91
92
93
  |Unop o1 e11 =>
   match e2 with
   |Unop o2 e22 => andb (unop_eq_bool o1 o2) (exp_eq_bool e11 e22)
   |_ => false
   end
  |Binop o1 e11 e12 =>
94
   match e2 with
95
   |Binop o2 e21 e22 => andb (binop_eq_bool o1 o2) (andb (exp_eq_bool e11 e21) (exp_eq_bool e12 e22))
96
97
98
   |_ => false
   end
  end.
99
100
101
102
103
(**
  Define a perturbation function to ease writing of basic definitions
**)
Definition perturb (r:R) (e:R) :=
  Rmult r (Rplus 1 e).
Heiko Becker's avatar
Heiko Becker committed
104

105
(**
106
107
108
109
110
111
Define expression evaluation relation parametric by an "error" epsilon.
This value will be used later to express float computations using a perturbation
of the real valued computation by (1 + delta), where |delta| <= machine epsilon.

It is important that variables are not perturbed when loading from an environment.
This is the case, since loading a float value should not increase an additional error.
112
**)
113
Inductive eval_exp (eps:R) (env:env_ty) : (exp R) -> R -> Prop :=
114
  Var_load x: eval_exp eps env (Var R x) (env x)
Heiko Becker's avatar
Heiko Becker committed
115
116
117
| Param_acc x delta:
    ((Rabs delta) <= eps)%R ->
    eval_exp eps env (Param R x) (perturb (env x) delta)
118
119
120
| Const_dist n delta:
    Rle (Rabs delta) eps ->
    eval_exp eps env (Const n) (perturb n delta)
121
122
123
124
125
126
127
(** Unary negation is special! We do not have a new error here since IEE 754 gives us a sign bit **)
| Unop_neg e1 v1: eval_exp eps env e1 v1 -> eval_exp eps env (Unop Neg e1) (eval_unop Neg v1)
| Unop_inv e1 v1 delta: Rle (Rabs delta) eps ->
                        eval_exp eps env e1 v1 ->
                        eval_exp eps env (Unop Inv e1) (perturb (eval_unop Inv v1) delta)
| Binop_dist op e1 e2 v1 v2 delta:
    Rle (Rabs delta) eps ->
128
129
130
131
                eval_exp eps env e1 v1 ->
                eval_exp eps env e2 v2 ->
                eval_exp eps env (Binop op e1 e2) (perturb (eval_binop op v1 v2) delta).

132
133
134
(**
If |delta| <= 0 then perturb v delta is exactly v
**)
Heiko Becker's avatar
Heiko Becker committed
135
136
137
138
139
140
141
142
143
144
145
146
Lemma perturb_0_val (v:R) (delta:R):
  (Rabs delta <= 0)%R ->
  perturb v delta = v.
Proof.
  intros abs_0; apply Rabs_0_impl_eq in abs_0; subst.
  unfold perturb.
  rewrite Rmult_plus_distr_l.
  rewrite Rmult_0_r.
  rewrite Rmult_1_r.
  rewrite Rplus_0_r; auto.
Qed.

147
148
149
(**
Evaluation with 0 as epsilon is deterministic
**)
150
Lemma eval_0_det (e:exp R) (env:env_ty):
151
152
153
154
155
156
  forall v1 v2,
  eval_exp R0 env e v1 ->
  eval_exp R0 env e v2 ->
  v1 = v2.
Proof.
  induction e; intros v1 v2 eval_v1 eval_v2;
157
158
159
160
161
162
163
164
    inversion eval_v1; inversion eval_v2; [ auto | | | | | | | ];
      repeat try rewrite perturb_0_val; subst; auto.
  - rewrite (IHe v0 v3); auto.
  - inversion H3.
  - inversion H4.
  - rewrite (IHe v0 v3); auto.
  - rewrite (IHe1 v0 v4); auto.
    rewrite (IHe2 v3 v5); auto.
165
166
Qed.

167
168
169
170
171
172
173
(**
Helping lemma. Needed in soundness proof.
For each evaluation of using an arbitrary epsilon, we can replace it by
evaluating the subexpressions and then binding the result values to different
variables in the environment.
This needs the property that variables are not perturbed as opposed to parameters
**)
174
Lemma existential_rewriting_binary (b:binop) (e1:exp R) (e2:exp R) (eps:R) (cenv:env_ty) (v:R):
175
176
177
178
  (eval_exp eps cenv (Binop b e1 e2) v <->
   exists v1 v2,
     eval_exp eps cenv e1 v1 /\
     eval_exp eps cenv e2 v2 /\
Heiko Becker's avatar
Heiko Becker committed
179
     eval_exp eps (updEnv 2 v2 (updEnv 1 v1 cenv)) (Binop b (Var R 1) (Var R 2)) v).
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
Proof.
  split.
  - intros eval_bin.
    inversion eval_bin; subst.
    exists v1, v2.
    repeat split; try auto.
    constructor; try auto.
    constructor; auto.
    constructor; auto.
  - intros exists_val.
    destruct exists_val as [v1 [v2 [eval_e1 [eval_e2 eval_e_env]]]].
    inversion eval_e_env; subst.
    inversion H4; inversion H5; subst.
    unfold updEnv in *; simpl in *.
    constructor; auto.
Qed.

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

Lemma existential_rewriting_unary (e:exp R) (eps:R) (cenv:env_ty) (v:R):
  (eval_exp eps cenv (Unop Inv e) v <->
   exists v1,
     eval_exp eps cenv e v1 /\
     eval_exp eps (updEnv 1 v1 cenv) (Unop Inv (Var R 1)) v).
Proof.
  split.
  - intros eval_un.
    inversion eval_un; subst.
    exists v1.
    repeat split; try auto.
    constructor; try auto.
    constructor; auto.
  - intros exists_val.
    destruct exists_val as [v1 [eval_e1 eval_e_env]].
    inversion eval_e_env; subst.
    inversion H1; subst.
    unfold updEnv in *; simpl in *.
    constructor; auto.
Qed.

219
220
221
222
223
224
225
226
(**
  Using the parametric expressions, define boolean expressions for conditionals
**)
Inductive bexp (V:Type) : Type :=
  leq: exp V -> exp V -> bexp V
| less: exp V -> exp V -> bexp V.
(**
  Define evaluation of booleans for reals
227
 **)
228
Inductive bval (eps:R) (env:env_ty) : (bexp R) -> Prop -> Prop :=
229
230
231
232
233
234
235
236
  leq_eval (e1:exp R) (e2:exp R) (v1:R) (v2:R):
    eval_exp eps env e1 v1 ->
    eval_exp eps env e2 v2 ->
    bval eps env (leq e1 e2) (Rle v1 v2)
|less_eval (e1:exp R) (e2:exp R) (v1:R) (v2:R):
    eval_exp eps env e1 v1 ->
    eval_exp eps env e2 v2 ->
    bval eps env (less e1 e2) (Rlt v1 v2).
237
238
239
240
241
(**
 Simplify arithmetic later by making > >= only abbreviations
**)
Definition gr := fun (V:Type) (e1: exp V) (e2: exp V) => less e2 e1.
Definition greq := fun (V:Type) (e1:exp V) (e2: exp V) => leq e2 e1.